Skip to main content
Log in

Modeling of diffusive transport of benzoic acid through a liquid membrane

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A model of diffusive transport of benzoic acid through a liquid membrane (LM) separating two aqueous solutions, based on diffusion layers and the assumption of a steady state, has been developed and tested using experimental results. It has been found that a model with the apparent partition coefficient dependent on the concentration is able to describe the time dependence of acid concentration in LM with and without a maximum on that dependence. The quality of the model fit with the single apparent diffusion coefficient of benzoic acid is the same as the one which takes into account the diffusion of benzoic acid in different forms (undissociated and dissociated form in aqueous phase, monomer and dimer in organic phase); however, in the second case, the model becomes overparameterized. Assuming that the partition and diffusion coefficients are constant, the diffusion layer model corresponds to the model of reversible consecutive reactions. Analytical solution for such case is given. Apart from the partition equilibrium, also kinetics of partitioning was considered. It was shown that in some basic situations both cases yield identical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpoguz, H. K., Memon, S., Ersoz, M., & Yilmaz, M. (2002). Transport of Hg2+ through bulk liquid membrane using a bis-calix[4]arene nitrile derivative as carrier: kinetic analysis. New Journal of Chemistry, 26, 477–480. DOI: 10.1039/B106225P.

    Article  Google Scholar 

  • Blahušiak, M., Schlosser, Š., & Marták, J. (2010). Simulation of a hybrid fermentation-separation process for production of butyric acid. Chemical Papers, 64, 213–222. DOI: 10.2478/s11696-009-0114-7.

    Article  Google Scholar 

  • Danesi, P. R., & Cianetti, C. (1984). Multistage separation of metal ions with a series of composite supported liquid membranes. Journal of Membrane Science, 20, 215–226. DOI: 10.1016/S0376-7388(00)81333-2.

    Article  CAS  Google Scholar 

  • Jönsson, J. Å. (2009). Membrane extraction in preconcentration, sampling, and trace analysis. In A. K. Pabby, S. S. H. Rizvi, & A. M. Sastre (Eds.), Handbook of membrane separations. Chemical, pharmaceutical, food, and biotechnological applications. Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Kobya, M., Topçu, N., & Demircioğlu, N. (1997). Kinetic analysis of coupled transport of thiocyanate ions through liquid membranes at different temperatures. Journal of Membrane Science, 130, 7–15. DOI: 10.1016/S0376-7388(96)00348-1.

    Article  CAS  Google Scholar 

  • Koryta, J., Dvořák, J., & Boháčková, V. (1980). Electrochemistry. Warszawa, Poland: PWN. (in Polish)

    Google Scholar 

  • León, G., de los Santos, R., & Guzmán, M. A. (2004). Reduction of sodium and chloride ion content in aqueous solutions by bulk liquid membranes: a kinetic approach, Desalination, 168, 271–275. DOI: 10.1016/j.desal.2004.07.008.

    Article  Google Scholar 

  • Long, B., Wang, Y., & Yang, Z. (2008). Partition behaviour of benzoic acid in (water + n-dodecane) solutions at T = (293.15 and 298.15) K. The Journal of Chemical Thermodynamics, 40, 1565–1568. DOI: 10.1016/j.jct.2008.06.014.

    Article  CAS  Google Scholar 

  • Ma, M., He, D., Wang, Q., & Xie, Q. (2001). Kinetics of europium( III) transport through a liquid membrane containing HEH(EHP) in kerosene. Talanta, 55, 1109–1117. DOI: 10.1016/S0039-9140(01)00525-2.

    Article  CAS  Google Scholar 

  • Makino, K., Ohshima, H., & Kondo, T. (1990). Kinetic model for membrane transport: 1. Effects of membrane volume and partitioning kinetics. Biophysical Chemistry, 35, 85–95. DOI: 10.1016/0301-4622(90)80063-D.

    Article  CAS  Google Scholar 

  • Marták, J., Schlosser, Š., & Vlčková, S. (2008). Pertraction of lactic acid through supported liquid membranes containing phosphonium ionic liquid. Journal of Membrane Science, 318, 298–310. DOI: 10.1016/j.memsci.2008.02.064.

    Article  Google Scholar 

  • Saf, A. Ö., Alpaydin, S., & Sirit, A. (2006). Transport kinetics of chromium(VI) ions through a bulk liquid membrane containing p-tert-butyl calix[4]arene 3-morpholino propyl diamide derivative. Journal of Membrane Science, 283, 448–455. DOI: 10.1016/j.memsci.2006.07.023.

    Article  CAS  Google Scholar 

  • Szpakowska, M., & Nagy, O. B. (1991). Membrane material effect on copper coupled transport through liquid membranes. Journal of Membrane Science, 64, 129–143. DOI: 10.1016/0376-7388(91)80084-J.

    Article  CAS  Google Scholar 

  • Tyn, M. T., & Calus, W. F. (1975). Diffusion coefficients in dilute binary liquid mixtures. Journal of Chemical & Engineering Data, 20, 106–109. DOI: 10.1021/je60064a006.

    Article  CAS  Google Scholar 

  • Yang, X.-N., & Matthews, M. A. (2000). Diffusion coefficients of three organic solutes in aqueous sodium dodecyl sulfate solutions. Journal of Colloid and Interface Science, 229, 53–61. DOI: 10.1006/jcis.2000.7020.

    Article  CAS  Google Scholar 

  • Zhang, W., Liu, J., Ren, Z., Wang, S., Du, C., & Ma, J. (2009). Kinetic study of chromium(VI) facilitated transport through a bulk liquid membrane using tri-n-butyl phosphate as carrier. Chemical Engineering Journal, 150, 83–89. DOI: 10.1016/j.cej.2008.12.009.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisław Koter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koter, S., Szczepański, P. Modeling of diffusive transport of benzoic acid through a liquid membrane. Chem. Pap. 65, 584–595 (2011). https://doi.org/10.2478/s11696-011-0010-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0010-9

Keywords

Navigation