Chemical Papers

, Volume 65, Issue 3, pp 289–298 | Cite as

Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst

  • Cornelia RatiuEmail author
  • Florica Manea
  • Carmen Lazau
  • Corina Orha
  • Georgeta Burtica
  • Ioan Grozescu
  • Joop Schoonman
Original Paper


This paper reports the results of an investigation into enhancement of the electrochemical oxidation of p-aminophenol (4-AP) in an aqueous solution with a boron-doped diamond (BDD) electrode, assisted by photocatalysis using a zeolite-supported TiO2 (Z-TiO2) catalyst. The BDD electrode was characterised in 0.1 M Na2SO4-supporting electrolyte and the presence of 4-AP by open-circuit potential behaviour (OCP) and cyclic voltammetry (CV). The electrode behaviour was investigated in the dark and following UV irradiation and in the absence/presence of the Z-TiO2 catalyst. The electro-oxidation process was carried out using chronoamperometry (CA) and multiple-pulsed amperometry (MPA) at the selected potential under potentiostatic conditions. The electrochemical degradation process of 4-AP on the BDD electrode was improved by the application of a pulsed potential, which allowed both in-situ electrochemical cleaning of the electrode and indirect oxidation of 4-AP by oxygen evolution. The application of photocatalysis using Z-TiO2 in the 4-AP electrochemical degradation exhibited an enhanced effect when the anodic potential was set at +1.25 V vs. Ag/AgCl in the water stability region, close to the oxygen evolution potential.


p-aminophenol removal electrochemical oxidation photocatalytically-assisted electrochemical oxidation zeolite-supported TiO2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An, T., Li, G., Xiong, Y., Zhu, X., Xing, H., & Liu, G. (2001). Photoelectrochemical degradation of methylene blue with nano TiO2 under high potential bias. Materials Physics and Mechanics, 4, 101–106.Google Scholar
  2. Augugliaro, V., Litter, M., Palmisano, L., & Soria, J. (2006). The combination of heterogeneous photocatalysis with chemical and physical operations: A tool for improving the photoprocess performance. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 7, 127–144. DOI:10.1016/j.jphotochemrev.2006.12.001.CrossRefGoogle Scholar
  3. Berríos, C., Arce, R., Rezende, M. C., Ureta-Zañartu, M. S., & Gutiérrez, C. (2008). Electrooxidation of chlorophenols at a glassy carbon electrode in a pH 11 buffer. Electrochimica Acta, 53, 2768–2775. DOI: 10.1016/j.electacta.2007.10.053.CrossRefGoogle Scholar
  4. Brillas, E., Mur, E., Sauleda, R., Sánchez, L., Peral, J., Domènech, X., & Casado, J. (1998). Aniline mineralization by AOP’s: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Applied Catalysis B: Environmental, 16, 31–42. DOI: 10.1016/S0926-3373(97)00059-3.CrossRefGoogle Scholar
  5. Cañizares, P., Martínez, L., Paz, R., Sáez, C., Lobato, J., & Rodrigo, M. A. (2006). Treatment of Fenton-refractory olive oil mill wastes by electrochemical oxidation with borondoped diamond anodes. Journal of Chemical Technology and Biotechnology, 81, 1331–1337. DOI: 10.1002/jctb.1428.CrossRefGoogle Scholar
  6. Cañizares, P., Sáez, C., Lobato, J., & Rodrigo, M. A. (2004). Electrochemical treatment of 2,4-dinitrophenol aqueous wastes using boron-doped diamond anodes. Electrochimica Acta, 49, 4641–4650. DOI: 10.1016/j.electacta.2004.05.019.CrossRefGoogle Scholar
  7. Charoenraks, T., Chuanuwatanakul, S., Honda, K., Yamaguchi, Y., & Chailapakul, O. (2005). Analysis of tetracycline antibiotics using HPLC with pulsed amperometric detection. Analytial Sciences, 21, 241–245. DOI: 10.2116/analsci.21.241.CrossRefGoogle Scholar
  8. Chen, J., Liu, M., Zhang, J., Ying, X., & Jin, L. (2004). Photocatalytic degradation of organic wastes by electrochemically assisted TiO2 photocatalytic system. Journal of Environmental Management, 70, 43–47. DOI: 10.1016/j.jenvman.2003.09.019.CrossRefGoogle Scholar
  9. Coteiro, R. D., & De Andrade, A. R. (2007). Electrochemical oxidation of 4-chlorophenol and its by-products using Ti/Ru0.3M0.7O2 (M = Ti or Sn) anodes: preparation route versus degradation efficiency. Journal of Applied Electrochemistry, 37, 691–698. DOI: 10.1007/s10800-007-9301-9.CrossRefGoogle Scholar
  10. Gherardini, L., Michaud, P. A., Panizza, M., Comninellis, C., & Vatistas, N. (2001). Electrochemical oxidation of 4-chlorophenol for wastewater treatment: Definition of normalized current efficiency (ϕ). Journal of the Electrochemical Society, 148, D78–D82. DOI: 10.1149/1.1368105.CrossRefGoogle Scholar
  11. Gomathi Devi, L., Kottam, N., Girish Kumar, S., & Anantha Raju, K. S. (2009). Mechanism of charge transfer in the transition metal ion doped TiO2 with bicrystalline framework of anatase and rutile: photocatalytic and photoelectrocatalytic activity. Catalysis Letters, 131, 612–617. DOI: 10.1007/s10562-009-0015-y.CrossRefGoogle Scholar
  12. Krýsa, J., & Jirkovský, J. (2002). Electrochemically assisted photocatalytic degradation of oxalic acid on particulate TiO2 film in a batch mode plate photoreactor. Journal of Applied Electrochemistry, 32, 591–596. DOI: 10.1023/A:1020172613963.CrossRefGoogle Scholar
  13. Lei, Y., Shen, Z., Chen, X., Jia, J., & Wang, W. (2006). Preparation and application of nano-TiO2 catalyst in dye electrochemical treatment. Water SA, 32, 205–210.Google Scholar
  14. Li, F., Jiang, Y., Yu, L., Yang, Z., Hou, T., & Sun, S. (2005). Surface effect of natural zeolite (clinoptilolite) on the photocatalytic activity of TiO2. Applied Surface Science, 252, 1410–1416. DOI: 10.1016/j.apsusc.2005.02.111.CrossRefGoogle Scholar
  15. Li, J., Zheng, L., Li, L., Xian, Y., & Jin, L. (2007). Fabrication of TiO2/Ti electrode by laser-assisted anodic oxidation and its application on photoelectrocatalytic degradation of methylene blue. Journal of Hazardous Materials, 139, 72–78. DOI:10.1016/j.jhazmat.2006.06.003.CrossRefGoogle Scholar
  16. Neelavannan, M. G., & Ahmed Basha, C. (2007). Electrochemical-assisted photocatalytic degradation of textile washwater. Separation and Purification Technology, 61, 168–174. DOI: 10.1016/j.seppur.2007.10.009.CrossRefGoogle Scholar
  17. Neelavannan, M. G., Revathi, M., & Ahmed Basha, C. (2007). Photocatalytic and electrochemical combined treatment of textile wash water. Journal of Hazardous Materials, 149, 371–378. DOI: 10.1016/j.jhazmat.2007.04.025.CrossRefGoogle Scholar
  18. Peñalver, A., Pocurull, E., Borrull, F., & Marcé, R. M. (2002). Solid-phase microextraction coupled to high-performance liquid chromatography to determine phenolic compounds in water samples. Journal of Chromatography A, 953, 79–87. DOI: 10.1016/S0021-9673(02)00113-9.CrossRefGoogle Scholar
  19. Quiroz, M. A., Reyna, S., Martínez-Huitle, C. A., Ferro, S., & De Battisti, A. (2005). Electrocatalytic oxidation of p-nitrophenol from aqueous solutions at Pb/PbO2 anodes. Applied Catalysis B: Environmental, 59, 259–266. DOI: 10.1016/j.apcatb.2005.02.009.CrossRefGoogle Scholar
  20. Ratiu, C., Lazau, C., Sfirloaga, P., Orha, C., Sonea, D., Novaconi, S., Manea, F., Burtica, G., & Grozescu, I. (2009a). Decontaminate effect of the functionalized materials with undoped and doped (Ag) TiO2 nanocrystals. Environmental Engineering and Management Journal, 8, 237–242.Google Scholar
  21. Ratiu, C., Lazau, C., Orha, C., Sfirloaga, P., Manea, F., Burtica, G., Iovi, A., & Grozescu, I. (2009b). Synthesis of hybrid zeolitic materials with TiO2 nanocrystals using solid-solid method. Journal of Optoelectronics and Advanced Materials, 11, 838–844.Google Scholar
  22. Safavi, A., Maleki, N., & Moradlou, O. (2008). A selective and sensitive method for simultaneous determination of traces of paracetamol and p-aminophenol in pharmaceuticals using carbon ionic liquid electrode. Electroanalysis, 20, 2158–2162. DOI: 10.1002/elan.200804292.CrossRefGoogle Scholar
  23. Salavagione, H. J., Arias, J., Garcés, P., Morallón, E., Barbero, C., & Vázques, J. L. (2004). Spectroelectrochemical study of the oxidation of aminophenols on platinum electrode in acid medium. Journal of Electroanalytical Chemistry, 565, 375–383. DOI: 10.1016/j.jelechem.2003.11.005.CrossRefGoogle Scholar
  24. Selcuk, H., & Bekbolet, M. (2008). Photocatalytic and photoelectrocatalytic humic acid removal and selectivity of TiO2 coated photoanode. Chemosphere, 73, 854–858. DOI: 10.1016/j.chemosphere.2008.05.069.CrossRefGoogle Scholar
  25. Shen, Z. M., Wu, D., Yang, J., Yuan, T., Wang, W. H., & Jia, J. P. (2006). Methods to improve electrochemical treatment effect of dye wastewater. Journal of Hazardous Materials, 131, 90–97. DOI: 10.1016/j.jhazmat.2005.09.010.CrossRefGoogle Scholar
  26. Skowrońsky, J. M., & Krawczyk, P. (2007). Improved electrooxidation of phenol at exfoliated graphite electrodes. Journal of Solid State Electrochemistry, 11, 223–230. DOI: 10.1007/s10008-005-0092-9.Google Scholar
  27. Suffredini, H. B., Machado, S. A. S., & Avaca, L. A. (2004). The water decomposition reactions on boron-doped diamond electrodes. Journal of the Brazilian Chemical Society, 15, 16–21. DOI: 10.1590/S0103-50532004000100004.CrossRefGoogle Scholar
  28. Sun, M., Yao, R., You, Y., Deng, S., & Gao, W. (2007). Degradation of 4-aminophenol by hydrogen peroxide oxidation using enzyme from Serratia marcescens as catalyst. Frontiers of Environmental Science & Engineering in China, 1, 95–98. DOI: 10.1007/s11783-007-0018-0.CrossRefGoogle Scholar
  29. Takeda, N., Torimoto, T., Sampath, S., Kuwabata, S., & Yoneyama, H. (1995). Effect of inert supports for titanium dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde. The Journal of Physical Chemistry, 99, 9986–9991. DOI: 10.1021/j100024a047.CrossRefGoogle Scholar
  30. Ureta-Zañartu, M. S., Bustos, P., Berríos, C, Diez, M. C., Mora, M. L., & Gutiérrez, C. (2002). Electrooxidation of 2,4-dichlorophenol and other polychlorinated phenols at a glassy carbon electrode. Electrochimica Acta, 47, 2399–2406. DOI: 10.1016/S0013-4686(02)00043-9.CrossRefGoogle Scholar
  31. Walsh, F. C. (2001). Electrochemical technology for environmental treatment and clean energy conversion. Pure and Applied Chemistry, 73, 1819–1837. DOI: 10.1351/pac200173121819.CrossRefGoogle Scholar
  32. Wang, B., Kong, W., & Ma, H. (2007). Electrochemical treatment of paper mill wastewater using three-dimensional electrodes with Ti/Co/SnO2-Sb2O5 anode. Journal of Hazardous Materials, 146, 295–301. DOI: 10.1016/j.jhazmat.2006.12.031.CrossRefGoogle Scholar
  33. Wang, Y. H., Chan, K. Y., Li, X. Y., & So, S. K. (2006) Electrochemical degradation of 4-chlorophenol at nickel-antimony doped tin oxide electrode. Chemosphere, 65, 1087–1093. DOI:10.1016/j.chemosphere.2006.04.061.CrossRefGoogle Scholar
  34. Zhang, Y., Yoshihara, S., & Shirakashi, T. (2005). Novel application of boron-doped diamond and related material to electrochemical generation of functional water. Electrochimica Acta, 51, 1008–1011. DOI: 10.1016/j.electacta.2005.04.054.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2011

Authors and Affiliations

  • Cornelia Ratiu
    • 1
    • 2
    Email author
  • Florica Manea
    • 2
  • Carmen Lazau
    • 1
  • Corina Orha
    • 1
  • Georgeta Burtica
    • 2
  • Ioan Grozescu
    • 1
  • Joop Schoonman
    • 3
  1. 1.Department of Condensed MatterNational Institute of Research-Development for Electrochemistry and Condensed Matter TimisoaraTimisoaraRomania
  2. 2.Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment“Politehnica” University of TimisoaraTimisoaraRomania
  3. 3.Department DelftChemTech, Faculty of Applied ScienceDelft University of TechnologyDelftThe Netherlands

Personalised recommendations