Advertisement

Chemical Papers

, Volume 65, Issue 3, pp 373–379 | Cite as

Solubility of methane in pure non-ionic surfactants and pure and mixtures of linear alcohols at 298 K and 101.3 kPa

  • Balbina P. García-Aguilar
  • Antonio Avalos Ramirez
  • J. Peter Jones
  • Michèle HeitzEmail author
Original Paper

Abstract

The emissions of methane (CH4), a powerful greenhouse gas (GES), contribute to the increase in GES concentration level in the atmosphere. For this reason, the importance of controlling CH4 emissions of anthropogenic origin has increased over the last decades. Physicochemical and biological processes are available for treating CH4. For this reason, such properties as the solubility of CH4 in aqueous solutions and organic solvents are of great relevance in different applications in environmental engineering and biotechnology. In this study, the solubility of CH4 was determined at 298 K and 101.3 kPa in organic solvents, such as polyoxyethylenesorbates (Tween 20, Tween 40, and Tween 60), and linear alcohols (methanol, ethanol, and butan-1-ol) alone and in their admixtures. Admixtures of methanol with butan-1-ol exhibited the highest solubility of CH4, of around 0.49 g m−3 of solvent, whereas the solubility of CH4 in linear alcohols varied from 0.167 g m−3 to 0.41 g m−3 of solvent. In the case of Tweens, CH4 solubility decreased with the hydrophilic-lipophilic balance (HLB) number.

Keywords

methane solubility partition coefficient linear alcohols polyoxyethylenesorbates surfactants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdulagatov, I. M., Bazaev, A. R., & Ramazanova, A. E. (1993). Volumetric properties and virial coefficients of (water+ methane). The Journal of Chemical Thermodynamics, 25, 249–259. DOI: 10.1006/jcht.1993.1024.CrossRefGoogle Scholar
  2. Anderberg, M. R. (1973). Cluster analysis for applications. New York, NY, USA: Academic Press.Google Scholar
  3. Atlas, R. M. (2004). Handbook of microbiological media (3rd ed., pp. 1270–1271). Boca Raton, FL, USA: CRC Press.CrossRefGoogle Scholar
  4. Boucher, O., Friedlingstein, P., Collins, B., & Shine, K. P. (2009). The indirect global warming potential and global temperature change potential due to methane oxidation. Environmental Research Letters, 4, 1–5. DOI: 10.1088/1748-9326/4/4/044007.CrossRefGoogle Scholar
  5. Cornish, A., Nicholls, K. M., Scott, D., Hunter, B. K., Aston, W. J., Higgins, I. J., & Sanders, J. K. M. (1984). In vivo 13C NMR investigations of methanol oxidation by the obligate methanotroph Methylosinus trichosporium OB3b. Journal of General Microbiology, 130, 2565–2575. DOI: 10.1099/00221287-130-10-2565.Google Scholar
  6. Chapoy, A., Mohammadi, A. H., Richon, D., & Tohidi, B. (2004). Gas solubility measurement and modeling for methane-water and methane-ethane-n-butane-water systems at low temperature conditions. Fluid Phase Equilibria, 220, 111–119. DOI: 10.1016/j.fluid.2004.02.010.CrossRefGoogle Scholar
  7. Cramer, S. D. (1984). Solubility of methane in brines from 0 to 300°C. Industrial & Engineering Chemistry Process Design and Development, 23, 533–538. DOI: 10.1021/i200026a021.CrossRefGoogle Scholar
  8. Dhima, A., de Hemptinne, J.-C., & Moracchini, G. (1998). Solubility of light hydrocarbons and their mixtures in pure water under high pressure. Fluid Phase Equilibria, 145, 129–150. DOI: 10.1016/S0378-3812(97)00211-2.CrossRefGoogle Scholar
  9. Duan, Z., Møller, N., Greenberg, J., & Weare, J. H. (1992). The prediction of methane solubility in natural waters to high ionic strength from 0 to 250°C and from 0 to 1600 bar. Geochimica et Cosmochimica Acta, 56, 1451–1460. DOI: 10.1016/0016-7037(92)90215-5.CrossRefGoogle Scholar
  10. Environment Canada (2008). National inventory report 1990–2006; Greenhouse gas sources and sinks in Canada. Gatineau, QC, Canada: Environment Canada.Google Scholar
  11. Frolich, P. K., Tauch, E. J., Hogan, J. J., & Peer, A. A. (1931). Solubilities of gases in liquids at high pressure. Industrial & Engineering Chemistry, 23, 548–550. DOI: 10.1021/ie50257a019.CrossRefGoogle Scholar
  12. Girard, M., Nikiema, J., Brzezinski, R., Buelna, G., & Heitz, M. (2009). A review of the environmental pollution originating from the piggery industry and of the available mitigation technologies: towards the simultaneous biofiltration of swine slurry and methane. Canadian Journal of Civil Engineering, 36, 1946–1957. DOI: 10.1139/L09-141.CrossRefGoogle Scholar
  13. Gupta, A. K., Teja, A. S., Chai, X. S., & Zhu, J. Y. (2000). Henry’s constants of n-alkanols (methanol through nhexanol) in water at temperatures between 40°C and 90°C. Fluid Phase Equilibria, 170, 183–192. DOI: 10.1016/S0378-3812(00)00350-2.CrossRefGoogle Scholar
  14. Hai, M., Han, B., Yang, G., Yan, H., & Han, Q. (1999). Effect of NaCl, NaOH, and poly(ethylene oxide) on methane solubilization in sodium dodecyl sulfate solutions. Langmuir, 15, 1640–1643. DOI: 10.1021/la980626r.CrossRefGoogle Scholar
  15. Haubrichs, R., & Widmann, R. (2006). Evaluation of aerated biofilter systems for microbial methane oxidation of poor landfill gas. Waste Management, 26, 408–416. DOI: 10.1016/j.wasman.2005.11.008.CrossRefGoogle Scholar
  16. Houweling, S., Kaminski, T., Dentener, F., Lelieveld, J., & Heimann, M. (1999). Inverse modeling of methane sources and sinks using the adjoint of a global transport model. Journal of Geophysical Research, 104(D21), 26,137–26,160. DOI: 10.1029/1999JD900428.CrossRefGoogle Scholar
  17. Khalil, M. A. K. (Ed.) (2000). Atmospheric methane. Its role in the global environment. Berlin, Germany: SpringerGoogle Scholar
  18. Kiepe, J., Horstmann, S., Fisher, K., & Gmehling, J. (2003). Experimental determination and prediction of gas solubility data for methane + water solutions containing different monovalent electrolytes. Industrial & Engineering Chemistry Research, 42, 5392–5398. DOI: 10.1021/ie030386x.CrossRefGoogle Scholar
  19. King, A. D., Jr. (2001). Solubilization of gases by poly(ethylene oxide)-poly(propylene oxide) triblock copolymers. Journal of Colloid and Interface Science, 244, 123–127. DOI: 10.1006/jcis.2001.7937.CrossRefGoogle Scholar
  20. King, A. D., Jr. (1992). Solubilization of gases by polyethoxylated lauryl alcohols. Journal of Colloid and Interface Science, 148, 142–147. DOI: 10.1016/0021-9797(92)90121-2.CrossRefGoogle Scholar
  21. King, A. D., Jr. (1990). Solubilization of gases by polyethoxylated nonyl phenols. Journal of Colloid and Interface Science, 137, 577–582. DOI: 10.1016/0021-9797(90)90431-M.CrossRefGoogle Scholar
  22. Leigh Mascarelli, A. (2009). A sleeping giant? Nature Reports Climate Change, 3, 46–49. DOI: 10.1038/climate.2009.24.CrossRefGoogle Scholar
  23. Lekvam, K., & Bishnoi, P. R. (1997). Dissolution of methane in water at low temperatures and intermediate pressure. Fluid Phase Equilibria, 131, 297–309. DOI: 10.1016/S0378-3812(96)03229-3.CrossRefGoogle Scholar
  24. Melse, R. W., & van der Werf, A. W. (2005). Biofiltration for mitigation of methane emission from animal husbandry. Environmental Science & Technology, 39, 5460–5468. DOI: 10.1021/es048048q.CrossRefGoogle Scholar
  25. Morrison, T. J., & Billett, F. (1952). The salting-out of non-electrolytes. Part II. The effect of variation in nonelectrolyte. Journal of the Chemical Society, 3, 3819–3822. DOI: 10.1039/JR9520003819.Google Scholar
  26. Namiot, A. Y. (1961). In H. L. Clever, & C. L. Young (Eds.), Methane, Solubility data serie (1987, Vol. 27–28, pp. 14). Oxford, UK: Pergamon Press.Google Scholar
  27. Olivier, J. G. J., & Berdowski, J. J. M. (2001). Global emission sources and sinks. In J. Berdowski, R. Guicherit, & B.-J. Heij (Eds.), The climate system (pp. 177). Lisse, The Netherlands: A.A. Balkema Publishers.Google Scholar
  28. O’sullivan, T. D., & Smith, N. O. (1970). Solubility and partial molar volume of nitrogen and methane in water and in aqueous sodium chloride from 50 to 125° and 100 to 600 atm. The Journal of Physical Chemistry, 74, 1460–1466. DOI: 10.1021/j100702a012.CrossRefGoogle Scholar
  29. Prapaitrakul, W., & King, A. D., Jr. (1986). The solubility of gases in aqueous solutions of sodium 1-heptanesulfonate and sodium perfluorooctanoate. Journal of Colloid and Interface Science, 112, 387–395. DOI: 10.1016/0021-9797(86)90106-2.CrossRefGoogle Scholar
  30. Rettich, T. R., Handa, Y. P., Battino, R., & Wihelm, E. (1981). Solubility of gases in liquids. 13. High-precision determination of Henry’s constants for methane and ethane in liquid water at 275 to 328 K. The Journal of Physical Chemistry, 85, 3230–3237. DOI: 10.1021/j150622a006.CrossRefGoogle Scholar
  31. Scheutz, C., Bogner, J. E., De Visscher, A., Gebert, J., Hilge, H. A., Huber-Humer, M., Kjeldsen, P., & Spokas, K. A. (2009). Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Management & Research, 27, 409–455. DOI: 10.1177/0734242X09339325.CrossRefGoogle Scholar
  32. Serra, M. C. C., Pessoa, F. L. P., & Palavra, A. M. F. (2006). Solubility of methane in water and in a medium for the cultivation of methanotrophs bacteria. The Journal of Chemical Thermodynamics, 38, 1629–1633. DOI: 10.1016/j.jct.2006.03.019.CrossRefGoogle Scholar
  33. Ukai, T., Kodama, D., Miyazaki, J., & Kato, M. (2002). Solubility of methane in alcohols and saturated density at 280.15 K. Journal of Chemical & Engineering Data, 47, 1320–1323. DOI: 10.1021/je020108p.CrossRefGoogle Scholar
  34. Wang, L.-K., Chen, G.-J., Han, G.-H., Guo, X.-Q., & Guo, T.-M. (2003). Experimental study on the solubility of natural gas components in water with or without hydrate inhibitor. Fluid Phase Equilibria, 207, 143–154. DOI: 10.1016/S0378-3812(03)00009-8.CrossRefGoogle Scholar
  35. Wen, W.-Y., & Hung, J. H. (1970). Thermodynamics of hydrocarbon gases in aqueous tetraalkylammonium salt solutions. The Journal of Physical Chemistry, 74, 170–180. DOI: 10.1021/j100696a032.CrossRefGoogle Scholar
  36. Zhang, Z.-Z., Gu, N., Cao, L., & Shu, X.-Q. (2009). Methane absorption and application of mixed organic aggregate prepared from Span80 and alkaline salt. Science in China Series E: Technological Sciences, 52, 2155–2160. DOI: 10.1007/s11431-009-0222-1.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2011

Authors and Affiliations

  • Balbina P. García-Aguilar
    • 1
    • 2
  • Antonio Avalos Ramirez
    • 2
  • J. Peter Jones
    • 2
  • Michèle Heitz
    • 2
    Email author
  1. 1.Division of Environmental TechnologyUniversidad Tecnológica de Nezahualcóyotl (UTN), Circuito Universidad TecnológicaEstado de MéxicoMéxico
  2. 2.Department of Chemical Engineering and Biotechnological Engineering, Faculty of EngineeringUniversité de SherbrookeSherbrookeCanada

Personalised recommendations