Advertisement

Chemical Papers

, Volume 65, Issue 3, pp 380–388 | Cite as

Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials

  • Vikas D. GhuleEmail author
  • Radhakrishnan Sarangapani
  • Pandurang M. Jadhav
  • Surya P. Tewari
Article

Abstract

Bicyclo[1.1.1]pentane is a highly strained hydrocarbon system due to close proximity of nonbonded bridge head carbons. Based on fully optimized molecular geometries at the density functional theory using the B3LYP/6-31G* level, densities, detonation velocities, and pressures for a series of polynitrobicyclo[1.1.1]pentanes, as well as their thermal stabilities were investigated in search for high energy density materials (HEDMs). The designed compounds with more than two nitro groups are characterized by high heat of formation and magnitude correlative with the number and space distance of nitro groups. Density was calculated using the crystal packing calculations and an increase in the number of nitro groups increases the density. The increase in density shows a linear increase in the detonation characteristics. Bond dissociation energy was analyzed to determine thermal stability. Calculations of the bond length and bond dissociation energies of the C-NO2 bond indicate that this may be the possible trigger bond in the pyrolysis mechanism. 1,2,3-Trinitrobicyclo[1.1.1]pentane (S3), 1,2,3,4-tetranitrobicyclo[1.1.1]pentane (S4), and 1,2,3,4,5-pentanitrobicyclo[1.1.1]pentane (S5) have better energetic characteristics with better stability and insensitivity, and as such may be explored in defense applications as promising candidates of the HEDMs series.

Keywords

bicyclo[1.1.1]pentane HEDM density functional theory heat of formation bond dissociation energy density 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accelrys (2004). Materials Studio 4.01. San Diego, CA, USA: Accelrys Inc.Google Scholar
  2. Alkorta, I., & Elguero, J. (1997). Carbon acidity and ring strain: A hybrid HF-DFT approach (Becke3LYP/6-311++G**). Tetrahedron, 53, 9741–9748. DOI: 10.1016/S0040-4020(97)00597-8.CrossRefGoogle Scholar
  3. Archibald, T. G., Garver, L. C., Baum, K., & Cohen, M. C. (1989). Synthesis of polynitrocyclobutane derivatives. Journal of Organic Chemistry, 54, 2869–2873. DOI: 10.1021/jo00273a019.CrossRefGoogle Scholar
  4. Archibald, T. G., Gilardi, R., Baum, K., & George, C. (1990). Synthesis and x-ray crystal structure of 1,3,3-trinitroazetidine. Journal of Organic Chemistry, 55, 2920–2924. DOI: 10.1021/jo00296a066.CrossRefGoogle Scholar
  5. Badgujar, D. M., Talawar, M. B., Asthana, S. N., & Mahulikar, P. P. (2008). Advances in science and technology of modern energetic materials: An overview. Journal of Hazardous Materials, 151, 289–305. DOI:10.1016/j.jhazmat.2007.10.039.CrossRefGoogle Scholar
  6. Baur, W. H., & Kassner, D. (1992). The perils of Cc: Comparing the frequencies of falsely assigned space groups with their general population. Acta Crystallographica Section B, 48, 356–369. DOI: 10.1107/S0108768191014726.CrossRefGoogle Scholar
  7. Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98, 5648–5662. DOI: 10.1063/1.464913.CrossRefGoogle Scholar
  8. Belsky, V. K., & Zorkii, P. M. (1977). Distribution of organic homomolecular crystals by chiral types and structural classes. Acta Crystallographica Section A, 33, 1004–1006. DOI: 10.1107/S0567739477002393.CrossRefGoogle Scholar
  9. Chapman, R. D. (2007). Organic difluoramine derivatives. Structure and Bonding, 125, 123–151. DOI: 10.1007/4302007058.CrossRefGoogle Scholar
  10. Chiang, J. F., & Bauer, S. H. (1970). Molecular structure of bicyclo[1.1.1]pentane. Journal of the American Chemical Society, 92, 1614–1617. DOI: 10.1021/ja00709a032.CrossRefGoogle Scholar
  11. Costantino, G., Maltoni, K., Marinozzi, M., Camaioni, E., Prezeau, L., Pin, J.-P., & Pellicciari, R. (2001). Synthesis and biological evaluation of 2-(3′-(1H-tetrazol-5-yl)bicyclo[1.1.1] pent-1-yl)glycine (S-TBPG), a novel mGlu1 receptor antagonist. Bioorganic & Medicinal Chemistry, 9, 221–227. DOI: 10.1016/S0968-0896(00)00270-4.CrossRefGoogle Scholar
  12. Della, E. W., & Elsey, G. M. (1988). Through-space effects of substituents on the stability of the 1-bicyclo[3.1.1]heptyl cation. Tetrahedron Letters, 29, 1299–1302. DOI: 10.1016/S0040-4039(00)80282-8.CrossRefGoogle Scholar
  13. Eaton, P. E., Ravi Shankar, B. K., Price, G. D., Pluth, J. J., Gilbert, E. E., Alster, J., & Sandus, O. (1984). Synthesis of 1,4-dinitrocubane. Journal of Organic Chemistry, 49, 185–186. DOI: 10.1021/jo00175a044.CrossRefGoogle Scholar
  14. Fan, X.-W., & Ju, X.-H. (2008). Theoretical studies on fourmembered ring compounds with NF2, ONO2, N3, and NO2 groups. Journal of Computational Chemistry, 29, 505–513. DOI: 10.1002/jcc.20809.CrossRefGoogle Scholar
  15. Fan, X.-W., Ju, X.-H., & Xiao, H.-M. (2008). Density functional theory study of piperidine and diazocine compounds. Journal of Hazardous Materials, 156, 342–347. DOI: 10.1016/j.jhazmat.2007.12.024.CrossRefGoogle Scholar
  16. Fischer, J. W., Hollins, R. A., Lowe-ma, C. K., Nissan, R. A., & Chapman, R. D. (1996). Synthesis and characterization of 1,2,3,4-cyclobutanetetranitramine derivatives. Journal of Organic Chemistry, 61, 9340–9343. DOI: 10.1021/jo9613040.CrossRefGoogle Scholar
  17. Fried, L. E., Manaa, M. R., Pagoria, P. F., & Simpson, R. L. (2001). Design and synthesis of energetic materials. Annual Review of Materials Research, 31, 291–321. DOI: 10.1146/annurev.matsci.31.1.291.CrossRefGoogle Scholar
  18. Friedli, A. C., Kaszynski, P., & Michl, J. (1989). Towards a molecular-size construction set: 3,3(n−1)-bisacetylthio[n]staffanes. Tetrahedron Letters, 30, 455–458. DOI: 10.1016/S0040-4039(00)95226-2.CrossRefGoogle Scholar
  19. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, T., Jr., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H. P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J. A. (2003). Gaussian 03. Revision A.1, Pittsburgh, PA, USA: Gaussian, Inc.Google Scholar
  20. Ghule, V. D., Jadhav, P. M., Patil, R. S., Radhakrishnan, S., & Soman, T. (2010). Quantum-chemical studies on hexaazaisowurtzitanes. Journal of Physical Chemistry A, 114, 498–503. DOI: 10.1021/jp9071839.CrossRefGoogle Scholar
  21. Hariharan, P. C., & Pople, J. A. (1973). The influence of polarization functions on molecular orbital hydrogenation energies. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 28, 213–222. DOI: 10.1007/BF00533485.Google Scholar
  22. Huynh, M.-H. V., Hiskey, M. A., Hartline, E. L., Montoya, D. P., & Gilardi, R. (2004). Polyazido high-nitrogen compounds: Hydrazo- and azo-1,3,5-triazine. Angewandte Chemie International Edition, 43, 4924–4928. DOI: 10.1002/anie.200460366.CrossRefGoogle Scholar
  23. Jalovy, Z., Zeman, S., Sučeska, M., Vávra, P., Dudek, K., & Rajić, M. (2001). 1,3,3-Trinitroazetidine (TNAZ). Part I. syntheses and properties. Journal of Energetic Materials, 19, 219–239. DOI: 10.1080/07370650108216127.CrossRefGoogle Scholar
  24. Ju, X.-H., Wang, X., & Bei, F.-L. (2005). Substituent effects on heats of formation, group interactions, and detonation properties of polyazidocubanes. Journal of Computational Chemistry, 26, 1263–1269. DOI: 10.1002/jcc.20263.CrossRefGoogle Scholar
  25. Kamlet, M. J., & Jacobs, S. J. (1968). Chemistry of detonations. I. A simple method for calculating detonation properties of CHNO explosives, Journal of Chemical Physics, 48, 23–35. DOI: 10.1063/1.1667908.CrossRefGoogle Scholar
  26. Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789. DOI: 10.1103/PhysRevB.37.785.CrossRefGoogle Scholar
  27. Levin, M. D., Kaszynski, P., & Michl, J. (2000). Bicyclo[1.1.1]pentanes, [n]staffanes, [1.1.1]propellanes, and tricycle[2.1.0.02,5]pentanes. Chemical Reviews, 100, 169–234. DOI: 10.1021/cr990094z.CrossRefGoogle Scholar
  28. Luo, S. J., Pan, W. L., Chi, Y. N., Xu, Y. Q., Huang, K. L., & Hu, C. W. (2008). Synthesis and characterization of a novel high thermally stable energy compound: 1-(1-Adamantylamino)-2,4,6-trinitrobenzene. Chinese Chemical Letters, 19, 1147–1150. DOI: 10.1016/j.cclet.2008.06.030.CrossRefGoogle Scholar
  29. Mayo, S. L., Olafson, B. D., & Goddard, W. A. (1990). DREIDING: a generic force field for molecular simulations. Journal of Physical Chemistry, 94, 8897–8909. DOI: 10.1021/j100389a010.CrossRefGoogle Scholar
  30. Mondal, T., Saritha, B., Ghanta, S., Roy, T. K., Mahapatra, S., & Durga Prasad, M. (2009). On some strategies to design new high energy density molecules. Journal of Molecular Structure: THEOCHEM, 897, 42–47. DOI: 10.1016/j.theochem.2008.11.013.CrossRefGoogle Scholar
  31. Nielsen, A. T., Nissan, R. A., Vanderah, D. J., Coon, C. L., Gilardi, R. D., George, C. F., & Flippen-Anderson, J. (1990). Polyazapolycyclics by condensation of aldehydes with amines. 2. Formation of 2,4,6,8,10,12-hexabenzyl-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.05.9.03,11]dodecanes from glyoxal and benzylamines. Journal of Organic Chemistry, 55, 1459–1466. DOI: 10.1021/jo00292a015.CrossRefGoogle Scholar
  32. Pagoria, P. F., Lee, G. S., Mitchell, A. R., & Schmidt, R. D. (2002). A review of energetic materials synthesis. Thermochimica Acta, 384, 187–204. DOI: 10.1016/S0040-6031(01)00805-X.CrossRefGoogle Scholar
  33. Peralta-Inga, Z., Degirmenbasi, N., Olgun, U., Gocmez, H., & Kalyon, D. M. (2006). Recrystallization of CL-20 and HNFX from solution for rigorous control of the polymorph type: Part I, mathematical modeling using molecular dynamics method. Journal of Energetic Materials, 24, 69–101. DOI: 10.1080/07370650600672082.CrossRefGoogle Scholar
  34. Politzer, P., Lane, P., & Concha, M. C. (2004). Computational determination of nitroaromatic solid phase heats of formation. Structural Chemistry, 15, 469–478. DOI: 10.1023/B:STUC.0000037904.53310.40.CrossRefGoogle Scholar
  35. Politzer, P., Lane, P., Grice, M. E., Concha, M. C., & Redfern, P. C. (1995). Comparative computational analysis of some nitramine and difluoramine structures, dissociation energies and heats of formation. Journal of Molecular Structure: THEOCHEM, 338, 249–256. DOI: 10.1016/0166-1280(94)04064-Y.CrossRefGoogle Scholar
  36. Qiu, L., Gong, X., Zheng, J., & Xiao, H. (2009). Theoretical studies on polynitro-1,3-bishomopentaprismanes as potential high energy density compounds. Journal of Hazardous Materials, 166, 931–938. DOI: 10.1016/j.jhazmat.2008.11.099.CrossRefGoogle Scholar
  37. Semmler, K., Szeimies, G., & Belzner, J. (1985). Tetracyclo[5.1.0.01,6.02,7]octane, a [1.1.1]propellane derivative, and a new route to the parent hydrocarbon. Journal of the American Chemical Society, 107, 6410–6411. DOI: 10.1021/ja00308a053.CrossRefGoogle Scholar
  38. Shao, J., Cheng, X., & Yang, X. (2005). Density functional calculations of bond dissociation energies for removal of the nitrogen dioxide moiety in some nitroaromatic molecules. Journal of Molecular Structure: THEOCHEM, 755, 127–130. DOI: 10.1016/j.theochem.2005.08.008.CrossRefGoogle Scholar
  39. Shtarev, A. B., Pinkhassik, E., Levin, M. D., Stibor, I., & Michl, J. (2001). Partially bridge-fluorinated dimethyl bicyclo[1.1.1]pentane-1,3-dicarboxylates: Preparation and NMR spectra. Journal of the American Chemical Society, 123, 3484–3492. DOI: 10.1021/ja0000495.Google Scholar
  40. Sikder, N., Sikder, A. K., Bulakh, N. R., & Gandhe, B. R. (2004). 1,3,3-Trinitroazetidine (TNAZ), a melt-cast explosive: synthesis, characterization and thermal behaviour. Journal of Hazardous Materials, 113, 35–43. DOI: 10.1016/j.jhazmat.2004.06.002.CrossRefGoogle Scholar
  41. Sollott, G. P., & Gilbert, E. E. (1980). A facile route to 1,3,5,7-tetraaminoadamantane. Synthesis of 1,3,5,7-tetranitroadamantane. Journal of Organic Chemistry, 45, 5405–5408. DOI: 10.1021/jo01314a051.CrossRefGoogle Scholar
  42. Stulgies, B., Pigg, D. P., Jr., Kaszynski, P., & Kudzin, Z. H. (2005). 9,9-Dimethyl-8,10-dioxapentacyclo[5.3.0.02,5.03,5.03,6]decane and naphthotetracyclo[5.1.0.01,6.02,7]oct-3-ene: new substituted [1.1.1]propellanes as precursors to 1,2,3,4-tetrafunctionalized bicyclo[1.1.1]pentanes. Tetrahedron, 61, 89–95. DOI: 10.1016/j.tet.2004.10.057.CrossRefGoogle Scholar
  43. Surya Prakash, G. K., Bae, C., Kroll, M., Olah, G. A. (2002). Synthesis of 1,3-bis(N,N-difluoroamino)adamantane: addition of difluoramino radicals to 1,3-dehydroadamantane. Journal of Fluorine Chemistry, 117, 103–105. DOI: 10.1016/S0022-1139(02)00155-0.CrossRefGoogle Scholar
  44. Wei, T., Zhu, W., Zhang, X., Li, Y.-F., & Xiao, H. (2009). Molecular design of 1,2,4,5-tetrazine based high-energy density materials. Journal of Physical Chemistry A, 113, 9404–9412. DOI: 10.1021/jp902295v.CrossRefGoogle Scholar
  45. Wiberg, K. B. (1985). Origin of strain in bicyclo[1.1.1]pentane. Tetrahedron Letters, 26, 599–602. DOI: 10.1016/S0040-4039(00)89157-1.CrossRefGoogle Scholar
  46. Wiberg, K. B., Connor, D. S., & Lampman, G. M. (1964). The reaction of 3-bromocyclobutane-1-methyl bromide with sodium: bicyclo[1.1.1]pentane. Tetrahedron Letters, 5, 531–534. DOI: 10.1016/S0040-4039(00)73269-2.CrossRefGoogle Scholar
  47. Wiberg, K. B., Hadad, C. M., Sieber, S., & Schleyer, P. v. R. (1992). Structures and energies of ions derived from bicyclo[1.1.1]pentane. Journal of the American Chemical Society, 114, 5820–5828. DOI: 10.1021/ja00040a051.CrossRefGoogle Scholar
  48. Wiberg, K. B., Ross, B. S., Isbell, J. J., & McMurdie, N. (1993). 2-Substituted bicyclo[1.1.1]pentanes. Journal of Organic Chemistry, 58, 1372–1376. DOI: 10.1021/jo00058a015.CrossRefGoogle Scholar
  49. Wiberg, K. B., & Waddell, S. T. (1990). Reactions of [1.1.1]propellane. Journal of the American Chemical Society, 112, 2194–2216. DOI: 10.1021/ja00162a022.CrossRefGoogle Scholar
  50. Wilcox, C. F., Zhang, Y.-X., & Bauer, S. H. (2000). The thermochemistry of TNAZ (1,3,3-trinitroazetidine) and related species: models for calculating heats of formation. Journal of Molecular Structure: THEOCHEM, 528, 95–109. DOI: 10.1016/S0166-1280(99)00475-3.CrossRefGoogle Scholar
  51. Williams, C. I., & Whitehead, M. A. (1997). Aromatic nitrogen heterocyclic heats of formation: a comparison of semiempirical and ab initio treatments. Journal of Molecular Structure: THEOCHEM, 393, 9–24. DOI: 10.1016/S0166-1280(96)04887-7.CrossRefGoogle Scholar
  52. Xu, X.-J., Xiao, H.-M., Ju, X.-H., Gong, X.-D., & Zhu, W.-H. (2006). Computational studies on polynitrohexaaza-admantanes as potential high energy density materials. Journal of Physical Chemistry A, 110, 5929–5933. DOI: 10.1021/jp0575557.CrossRefGoogle Scholar
  53. Yao, X.-Q., Hou, X.-J., Wu, G.-S., Xu, Y.-Y., Xiang, H.-W., Jiao, H., & Li, Y.-W. (2002). Estimation of C-C bond dissociation enthalpies of large aromatic hydrocarbon compounds using DFT methods. Journal of Physical Chemistry A, 106, 7184–7189. DOI: 10.1021/jp020607x.CrossRefGoogle Scholar
  54. Zahedi, E., Aghaie, M., & Zare, K. (2009). A density functional study of NBO, NICS and 14N NQR parameters of 5-methylcytosine tautomers in the gas phase. Journal of Molecular Structure: THEOCHEM, 905, 101–105. DOI: 10.1016/j.theochem.2009.03.017.CrossRefGoogle Scholar
  55. Zhang, C. (2009). Review of the establishment of nitro group charge method and its applications. Journal of Hazardous Materials, 161, 21–28. DOI: 10.1016/j.jhazmat.2008.04.001.CrossRefGoogle Scholar
  56. Zhang, C. (2006). Investigation on the correlation between the interaction energies of all substituted groups and the molecular stabilities of nitro compounds. Journal of Physical Chemistry A, 110, 14029–14035. DOI: 10.1021/jp063734s.CrossRefGoogle Scholar
  57. Zhang, C., Shu, Y., Huang, Y., & Wang, X. (2005a). Theoretical investigation of the relationship between impact sensitivity and the charges of the nitro group in nitro compounds. Journal of Energetic Materials, 23, 107–119. DOI: 10.1080/07370650590936433.CrossRefGoogle Scholar
  58. Zhang, C., Shu, Y., Huang, Y., Zhao, X., & Dong, H. (2005b). Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds. Journal of Physical Chemistry B, 109, 8978–8982. DOI: 10.1021/jp0512309.CrossRefGoogle Scholar
  59. Zhang, J., Xiao, H., & Gong, X. (2001). Theoretical studies on heats of formation for polynitrocubanes using the density functional theory B3LYP method and semiempirical MO methods. Journal of Physical Organic Chemistry, 14, 583–588. DOI:10.1002/poc.404.CrossRefGoogle Scholar
  60. Zhang, M.-X., Eaton, P. E., & Gilardi, R. (2000). Hepta- and octanitrocubanes. Angewandte Chemie International Edition, 39, 401–404. DOI: 10.1002/(SICI)1521-3773(20000117)39:2〈401::AID-ANIE401〉3.0.CO;2-P.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2011

Authors and Affiliations

  • Vikas D. Ghule
    • 1
    Email author
  • Radhakrishnan Sarangapani
    • 2
  • Pandurang M. Jadhav
    • 2
  • Surya P. Tewari
    • 1
  1. 1.Advanced Centre of Research in High Energy Materials (ACRHEM)University of HyderabadHyderabadIndia
  2. 2.High Energy Materials Research Laboratory (HEMRL)PuneIndia

Personalised recommendations