Skip to main content
Log in

Carnauba wax microparticles produced by melt dispersion technique

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Melt dispersion technique was investigated for carnauba wax microparticles production. Microbeads with spherical shape and narrow size distribution were produced. The main objective of this study was to investigate the effect of significant process variables (initial wax concentration, stirring speed, stirring time, and surfactants) on sphericity, size distribution, and morphological properties of wax microparticles. Optimal conditions were evaluated on the basis of particle size distribution and visual analysis. Surface morphology of microparticles was characterized by scanning electron microscopy (SEM). Effects of process conditions on the size distribution of particles were evaluated by sieve analysis. Main purpose of these investigations was to apply optimized parameters to aroma encapsulation for their use in food and feed industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertini, B., Passerini, N., Pattarino, F., & Rodriguez, L. (2008). New spray congealing atomizer for the microencapsulation of highly concentrated solid and liquid substances. European Journal of Pharmaceutics and Biopharmaceutics, 69, 348–357. DOI: 10.1016/j.ejpb.2007.09.011.

    Article  CAS  Google Scholar 

  • Barakat, N. S., & Yassin, A. B. E. (2006). In vitro characterization of carbamazepine-loaded precifac lipospheres. Drug Delivery, 13, 95–104. DOI: 10.1080/10717540500313661.

    Article  CAS  Google Scholar 

  • Card, Q. P., Deerfield, N. K., & Palatine, S. (1960). Flavor premixes for animal feeds. U. S. Patent No. 2,921,853. U.S. Patent Office.

  • Cheboyina, S., & Wyandt, C. M. (2008). Wax-based sustained release matrix pellets prepared by a novel freeze pelletization technique: II. In vitro drug release studies and release mechanisms. International Journal of Pharmaceutics, 359, 167–173. DOI: 10.1016/j.ijpharm.2008.04.001.

    Article  CAS  Google Scholar 

  • Curle, N., & Davies, H. J. (1968). Modern fluid dynamics (Vol. 1). London, UK: Van Nostrand.

    Google Scholar 

  • Donhowe, I. G., & Fennema, O. (1993). Water vapor and oxygen permeability of wax films. Journal of the American Oil Chemists’ Society, 70, 867–873. DOI: 10.1007/BF02545345.

    Article  CAS  Google Scholar 

  • Dunker, M. F. W. (1960). Colloids, emulsions and suspensions. In J. B. Sprowls (Ed.), American pharmacy: Textbook of pharmaceutical principles, processes and preparations (5th ed., pp. 107–148). Philadelphia, PA, USA: J. B. Lippincott Company.

    Google Scholar 

  • Fuchs, M., Turchiuli, C., Bohin, M., Cuvelier, M. E., Ordonnaud, C., Peyrat-Maillard, M. N., & Dumoulin, E. (2006). Encapsulation of oil in powder using spray drying and fluidized bed agglomeration. Journal of Food Engineering, 75, 27–35. DOI: 10.1016/j.jfoodeng.2005.03.047.

    Article  CAS  Google Scholar 

  • Gowda, D. V., & Shivakumar, H. G. (2007). Preparation and evaluation of waxes/fat microspheres loaded with lithium carbonate for controlled release. Indian Journal of Pharmaceutical Sciences, 69, 251–256. DOI: 10.4103/0250-474X.33152.

    Article  CAS  Google Scholar 

  • Hinze, J. O. (1955). Fundamentals of the hydrodynamic mechanism of splitting in dispersion process. AIChE Journal, 1, 289–295. DOI: 10.1002/aic.690010303.

    Article  CAS  Google Scholar 

  • Jenning, V., & Gohla, S. (2000). Comparison of wax and glyceride solid lipid nanoparticles (SLN®). International Journal of Pharmaceutics, 196, 219–222. DOI: 10.1016/S0378-5173(99)00426-3.

    Article  CAS  Google Scholar 

  • Holmberg, K., Jönsson, B., Kronberg, B., & Lindman, B. (2003). Surfactants and polymers in aqueous solution (2nd ed., p. 463). Etobicoke, ON, Canada: Wiley. DOI: 10.1002/0470856424.ch21.

    Google Scholar 

  • Kamble, R., Maheshwari, M., Paradkar, A., & Kadam, S. (2004). Melt solidification technique: Incorporation of higher wax content in ibuprofen beads. AAPS PharmSciTech, 5(4), 75–83. DOI: 10.1208/pt050461.

    Article  Google Scholar 

  • Katona, J. M., Sovilj, V. J., Petrović, L. B., & Mucić, N. Z. (2010). Tensiometric investigation of the interaction and phase separation in a polymer mixture-ionic surfactant ternary system. Journal of the Serbian Chemical Society, 75, 823–831. DOI: 10.2298/JSC100112056K.

    Article  CAS  Google Scholar 

  • Kolmogorov, A. N. (1949). On the disintegration of drops in turbulent flow. Doklady Akademii Nauk SSSR, 66, 825–828.

    Google Scholar 

  • McClements, D. J. (1999). Food emulsions: Principles, practice, and techniques (2nd ed.). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Media Cybernetics, Inc. (2007). Image Pro plus v. 6.2. Bethesda, MD, USA: Media Cybernetcs, Inc.

    Google Scholar 

  • Mellema, M., Van Benthum, W. A. J., Boer, B., Von Harras, J., & Visser, A. (2006). Wax encapsulation of water-soluble compounds for application in foods. Journal of Microencapsulation, 23, 729–740. DOI: 10.1080/02652040600787900.

    Article  CAS  Google Scholar 

  • Milanovic, J., Manojlovic, V., Levic, S., Rajic, N., Nedovic, V., & Bugarski, B. (2010). Microencapsulation of flavors in Carnauba wax. Sensors, 10, 901–912. DOI: 10.3390/s100100901.

    Article  CAS  Google Scholar 

  • Miyagawa, Y., Okabe, T., Yamaguchi, Y., Miyajima, M., Sato, H., & Sunada, H. (1996). Controlled-release of diclofenac sodium from wax matrix granule. International Journal of Pharmaceutics, 138, 215–224. DOI: 10.1016/0378-5173(96)04547-4.

    Article  CAS  Google Scholar 

  • Özyazıcı, M., Gökçe, E. H., & Ertan, G. (2006). Release and diffusional modeling of metronidazole lipid matrices. European Journal of Pharmaceutics and Biopharmaceutics, 63, 331–339. DOI: 10.1016/j.ejpb.2006.02.005.

    Article  Google Scholar 

  • Passerini, N., Perissutti, B., Albertini, B., Voinovich, D., Moneghini, M., & Rodriguez, L. (2003). Controlled release of verapamil hydrochloride from waxy microparticles prepared by spray congealing. Journal of Controlled Release, 88, 263–275. DOI: 10.1016/S0168-3659(03)00009-9.

    Article  CAS  Google Scholar 

  • Popplewell, M. L., & Porzio, A. M. (2001). Fat-coated encapsulation composition and method for preparing the same. U.S. Patent No. 6,245,366. U.S. Patent Office.

  • Reithmeier, H., Herrmann, J., & Göpferich, A. (2001). Development and characterization of lipid microparticles as a drug carrier for somatostatin. International Journal of Pharmaceutics, 218, 133–143. DOI: 10.1016/S0378-5173(01)00620-2.

    Article  CAS  Google Scholar 

  • Rodriguez, L., Passerini, N., Cavallari, C., Cini, M., Sancin, P., & Fini, A. (1999). Description and preliminary evaluation of a new ultrasonic atomizer for spray-congealing processes. International Journal of Pharmaceutics, 183, 133–143. DOI: 10.1016/S0378-5173(99)00076-9.

    Article  CAS  Google Scholar 

  • Singh, R., Poddar, S. S., & Chivate, A. (2007). Sintering of wax for controlling release from pellets. AAPS PharmSciTech, 8, E175–E183. DOI: 10.1208/pt0803074.

    Article  Google Scholar 

  • Villalobos-Hernández, J. R., & Müller-Goymann, C. C. (2007). In vitro erythemal UV-A protection factors of inorganic sunscreens distributed in aqueous media using carnauba wax-decyl oleate nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 65, 122–125. DOI: 10.1016/j.ejpb.2006.07.013.

    Article  Google Scholar 

  • Villalobos-Hernández, J. R., & Müller-Goymann, C. C. (2006a). Sun protection enhancement of titanium dioxide crystals by the use of carnauba wax nanoparticles: The synergistic interaction between organic and inorganic sunscreens at nanoscale. International Journal of Pharmaceutics, 322, 161–170. DOI: 10.1016/j.ijpharm.2006.05.037.

    Article  Google Scholar 

  • Villalobos-Hernández, J. R., & Müller-Goymann, C. C. (2006b). Physical stability, centrifugation tests, and entrapment eficency studies of carnauba wax-decyl oleate nanoparticles used for the dispersion of inorganic sunscreens in aqueous media. European Journal of Pharmaceutics and Biopharmaceutics, 63, 115–127. DOI: 10.1016/j.ejpb.2006.01.005.

    Article  Google Scholar 

  • Villalobos-Hernández, J. R., & Müller-Goymann, C. C. (2005). Novel nanoparticulate carrier system based on carnauba wax and decyl oleate for the dispersion of inorganic sunscreens in aqueous media. European Journal of Pharmaceutics and Biopharmaceutics, 60, 113–122. DOI: 10.1016/j.ejpb.2004.11.002.

    Article  Google Scholar 

  • Wang, L., Ando, S., Ishida, Y., Ohtani, H., Tsuge, S., & Nakayama, T. (2001). Quantitative and discriminative analysis of carnauba waxes by reactive pyrolysis-GC in the presence of organic alkali using a vertical microfurnace pyrolyzer. Journal of Analytical and Applied Pyrolysis, 58-59, 525–537. DOI: 10.1016/S0165-2370(00)00155-8.

    Article  CAS  Google Scholar 

  • Walstra, P., & Smudlers, I. (1997). Making emulsion and foams: an overview. In E. Dickinson, & B. Bergenstähl (Eds.), Food colloids, proteins, lipids and polysaccharides (pp. 367–381). Cambridge, UK: Royal Society of Chemistry.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branko Bugarski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milanovic, J., Levic, S., Manojlovic, V. et al. Carnauba wax microparticles produced by melt dispersion technique. Chem. Pap. 65, 213–220 (2011). https://doi.org/10.2478/s11696-011-0001-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0001-x

Keywords

Navigation