Skip to main content
Log in

Modelling of nanocrystalline iron nitriding process — influence of specific surface area

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Samples of iron catalysts of various specific surface areas for ammonia synthesis underwent nitriding with ammonia in a tubular reactor where continuous thermogravimetric measurement and measurements of hydrogen concentration in the gaseous phase were simultaneously performed. The nitriding process was performed under atmospheric pressure at 475°C. It was observed that, along with an increase in the mean size of iron nano-crystallites, the minimum nitriding potential (at which the iron nitriding reaction is initiated) of the gaseous phase also increased. The degree of nitriding of the catalyst samples increased with the increase in the mean size of iron crystallites. On the basis of the values of nitriding potential, nano-crystallite size distributions can be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arabczyk, W. (2005). The state of studies on iron catalyst for the ammonia synthesis. Polish Journal of Chemical Technology, 7, 8–17.

    CAS  Google Scholar 

  • Arabczyk, W., & Jasińska, I. (2006). The current state of knowledge of iron catalysts used in ammonia synthesis. Przemysł Chemiczny, 85, 130–137. (in Polish)

    CAS  Google Scholar 

  • Arabczyk, W., Jasińska, I., & Lubkowski, K. (2004). The surface properties of iron catalyst for ammonia synthesis. Reaction Kinetics and Catalysis Letters, 83, 385–392. DOI:10.1023/B:REAC.0000046101.89184.b8.

    Article  CAS  Google Scholar 

  • Arabczyk, W., & Kałucki, K. (1993). New model of deactivation of iron catalysts for ammonia synthesis. Studies in Surface Science and Catalysis, 75, 2539–2542. DOI: 10.1016/S0167-2991(08)64344-X.

    Article  CAS  Google Scholar 

  • Arabczyk, W., Moszyński, D., Narkiewicz, U., Pelka, R., & Podsiadły, M. (2007). Poisoning of iron catalyst by sulfur. Catalysis Today, 124, 43–48. DOI: 10.1016/j.cattod.2007.02.003.

    Article  CAS  Google Scholar 

  • Arabczyk, W., Narkiewicz, U., & Kałucki, K. (1994). Model of active surface of iron catalyst for ammonia synthesis. Vacuum, 45, 267–269. DOI: 10.1016/0042-207X(94)90186-4.

    Article  CAS  Google Scholar 

  • Arabczyk, W., Narkiewicz, U., & Moszyński, D. (1999). Doublelayer model of the fused iron catalyst for ammonia synthesis. Langmuir, 15, 5785–5789. DOI: 10.1021/la981132x.

    Article  CAS  Google Scholar 

  • Arabczyk, W., & Pelka, R. (2009). Studies of the kinetics of two parallel reactions: ammonia decomposition and nitriding of iron catalyst. Journal of Physical Chemistry A, 113, 411–416. DOI: 10.1021/jp8079759.

    Article  CAS  Google Scholar 

  • Arabczyk, W., & Wróbel, R. (2003). Study of the kinetics of nitriding of nanocrystalline iron using TG and XRD methods. Solid State Phenomena, 94, 185–188. DOI:10.4028/www.scientific.net/SSP.94.185.

    Article  CAS  Google Scholar 

  • Arabczyk, W., Zamłynny, J., & Moszyński, D. (2006). The influence of hydrogen sulphide on the kinetics of ammonia decomposition over a doubly promoted iron catalyst. Polish Journal of Chemistry, 80, 345–350.

    CAS  Google Scholar 

  • Arabczyk, W., Zamłynny, J., Moszyński, D., & Kałucki, K. (2005). Ammonia decomposition over iron in the presence of water vapor. Polish Journal of Chemistry, 79, 1495–1501.

    CAS  Google Scholar 

  • Bell, T., Birch, B. J., Korotchenko, V., & Evans, S. P. (1975). Controlled nitriding in ammonia-hydrogen mixtures. In Heat treatment’ 73 (Book no. 163, pp. 51–57). London, UK: The Metals Society.

    Google Scholar 

  • Ertl, G. (1991). Elementary steps in ammonia synthesis: the surface science approach. In J. R. Jennings (Ed.), Catalytic ammonia synthesis fundamentals and practice (pp. 109–131). New York, NY, USA: Plenum Press.

    Google Scholar 

  • Ertl, G. (1989). Physical characterization of industrial catalysts: The mechanism of ammonia synthesis. Studies in Surface Science and Catalysis, 44, 315–320. DOI: 10.1016/S0167-2991(09)61307-0.

    Article  CAS  Google Scholar 

  • Ertl, G., Lee, S. B., & Weiss, M. (1982). Kinetics of nitrogen adsorption on Fe(111). Surface Science, 114, 515–526. DOI:10.1016/0039-6028(82)90702-6.

    Article  CAS  Google Scholar 

  • Figurski, M. J., Arabczyk, W., Lendzion-Bieluń, Z., Kaleńczuk, R. J., & Lenart, S. (2003). On the distribution of aluminium and magnesium oxides in wustite catalysts for ammonia synthesis. Applied Catalysis A: General, 247, 9–15. DOI:10.1016/S0926-860X(03)00084-X.

    Article  CAS  Google Scholar 

  • Figurski, M. J., Arabczyk, W., Lendzion-Bieluń, Z., & Lenart, S. (2004). Investigation of manganese-doped iron ammonia synthesis catalysts. Applied Catalysis A: General, 266, 11–20. DOI: 10.1016/j.apcata.2004.01.032.

    Article  CAS  Google Scholar 

  • Frankenburg, W. G. (1955). The catalytic synthesis of ammonia from nitrogen and hydrogen. In P. H. Emmett (Ed.), Catalysis (Vol. 3, pp. 171–263). New York, NY, USA: Reinhold Publishing Corporation.

    Google Scholar 

  • Grabke, H. J. (1969). Zur Fehlordnung des γ′-Eisennitrids. Berichte der Bunsen-Gesellschaft für Physikalische Chemie, 73, 596–601. DOI: 10.1002/bbpc.19690730617.

    CAS  Google Scholar 

  • Jennings, J. R. (Ed.) (1991). Catalytic ammonia synthesis fundamentals and practice. New York, NY, USA: Plenum Press.

    Google Scholar 

  • Kiełbasa, K., Pelka, R., & Arabczyk, W. (2010). Studies of the kinetics of ammonia decomposition on promoted nanocrystalline iron using gas phases of different nitriding degree. Journal of Physical Chemistry A, 114, 4531–4534. DOI:10.1021/jp9099286.

    Article  Google Scholar 

  • Kunze, J. (1990). Nitrogen and carbon in iron and steels thermodynamics. In Physical research (Vol. 16). Berlin, Germany: Akademie Verlag.

    Google Scholar 

  • Lehrer, E. (1930). Über das Eisen-Wasserstoff-Ammoniak-Gleichgewicht. Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie, 36, 383–392. DOI: 10.1002/bbpc.19300360606.

    CAS  Google Scholar 

  • Lendzion-Bieluń, Z., & Arabczyk, W. (2001). Method for determination of the chemical composition of phases of the iron catalyst precursor for ammonia synthesis. Applied Catalysis A: General, 207, 37–41. DOI: 10.1016/S0926-860X(00)00614-1.

    Article  Google Scholar 

  • Lendzion-Bieluń, Z., Arabczyk, W., & Figurski, M. (2002). The effect of the iron oxidation degree on distribution of promoters in the fused catalyst precursors and their activity in the ammonia synthesis reaction. Applied Catalysis A: General, 227, 255–263. DOI: 10.1016/S0926-860X(01)00938-3.

    Article  Google Scholar 

  • Lightfoot, B. J., & Jack, D. H. (1975). Kinetics of nitriding with and without white-layer formation. In Heat treatment’ 73 (Book no. 163, pp. 59–65). London, UK: The Metals Society.

    Google Scholar 

  • Lu, K., & Lu, J. (1999). Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach. Journal of Materials Science and Technology, 15, 193–197.

    CAS  Google Scholar 

  • Moszyńska, I., Moszyński, D., & Arabczyk, W. (2009). Hysteresis in nitriding and reduction in the nanocrystalline iron-ammonia-hydrogen system. Przemysł Chemiczny, 88, 526–529. (in Polish)

    Google Scholar 

  • Nielsen, A. (1968). An investigation on promoted iron catalysts for the synthesis of ammonia. Copenhagen, Denmark: Julius Gjellerups Forlag.

    Google Scholar 

  • Nielsen, A. (Ed.) (1995). Ammonia: Catalysis and manufacture. Berlin, Germany: Springer-Verlag.

    Google Scholar 

  • Park, J. Y., & Levenspiel, O. (1975). The crackling core model for the reaction of solid particles. Chemical Engineering Science, 30, 1207–1214. DOI: 10.1016/0009-2509(75)85041-X.

    Article  CAS  Google Scholar 

  • Pelka, R., & Arabczyk, W. (2009). Studies of the kinetics of reaction between iron catalysts and ammonia — Nitriding of nanocrystalline iron with parallel catalytic ammonia decomposition. Topics in Catalysis, 52, 1506–1516. DOI:10.1007/s11244-009-9297-y.

    Article  CAS  Google Scholar 

  • Pelka, R., Glinka, P., & Arabczyk, W. (2008). The influence of iron nanocrystallite size on a nitriding process rate. Materials Science-Poland, 26, 349–356.

    CAS  Google Scholar 

  • Pelka, R., Moszyńska, I., & Arabczyk, W. (2009). Catalytic ammonia decomposition over Fe/Fe4N. Catalysis Letters, 128, 72–76. DOI: 10.1007/s10562-008-9758-0.

    Article  CAS  Google Scholar 

  • Schlögl, R. (1991). Preparation and activation of the technical ammonia synthesis catalyst. In J. R. Jennings (Ed.), Catalytic ammonia synthesis fundamentals and practice (pp. 19–107). New York, NY, USA: Plenum Press.

    Google Scholar 

  • Seth, B. B. L., & Ross, H. U. (1965). The mechanism of iron oxide reduction. Transactions of the Metallurgical Society of AIME, 233, 180–185.

    CAS  Google Scholar 

  • Tong, W. P., He, C. S., He, J. C., Zuo, L., Tao, N. R., & Wang, Z. B. (2006). Strongly enhanced nitriding kinetics by means of grain refinement. Applied Physics Letters, 89(2), 021918 (3 pages). DOI: 10.1063/1.2221498.

    Article  Google Scholar 

  • Tong, W. P., Tao, N. R., Wang, Z. B., Zhang, H. W., Lu, J., & Lu, K. (2004). The formation of ɛ-Fe3-2N phase in a nanocrystalline Fe. Scripta Materialia, 50, 647–650. DOI:10.1016/j.scriptamat.2003.11.022.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał Pelka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelka, R., Arabczyk, W. Modelling of nanocrystalline iron nitriding process — influence of specific surface area. Chem. Pap. 65, 198–202 (2011). https://doi.org/10.2478/s11696-010-0105-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-010-0105-8

Keywords

Navigation