Chemical Papers

, Volume 65, Issue 3, pp 332–337 | Cite as

An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives

  • Abdelmounaim Safer
  • Mustapha Rahmouni
  • François Carreaux
  • Ludovic Paquin
  • Olivier Lozach
  • Laurent Meijer
  • Jean Pierre BazureauEmail author
Original Paper


A series of nine 5-arylidenerhodanine derivatives was prepared in good yields and purity without the use of a solvent or catalyst under microwave-assisted condensation with some substituted isatins. All 5-arylidenerhodanines were evaluated as possible inhibitors of the CK1α/β, CDK5/p25, and GSK-3α/β kinases. None of them showed substantive inhibitory activity against these kinases when evaluated at the concentration of 10 μM.


rhodanine isatin Knoevenagel condensation solvent-free microwave 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreasch, R. (1917). Über substituierte Rhodanine und einige ihrer Aldehydkondensationsprodukte. XIII. Mitteilung. Monatshefte für Chemie, 38, 121–139. DOI: 10.1007/BF01526473.CrossRefGoogle Scholar
  2. Bach, S., Knockaert, M., Reinhardt, J., Lozach, O., Schmitt, S., Baratte, B., Koken, M., Coburn, S. P., Tang, L., Jiang, T., Liang, D.-C., Galons, H., Dierick, J.-F., Pinna, L. A., Meggio, F., Totzke, F., Schächtele, C., Lerman, A. S., Carnero, A., Wan, Y., Gray, N., & Meijer, L. (2005). Roscovitine targets, protein kinases and pyridoxal kinase. Journal of Biological Chemistry, 280, 31208–31219. DOI: 10.1074/jbc.M500806200.CrossRefGoogle Scholar
  3. Bapodra, A. H., Bharmal, F., & Parekh, H. (2002). Synthesis and biological activity of 2-(3′,5′-dibromo-2′-hydroxyphenyl)-3-aryl-5H/methyl/carboxymethyl-4-thiazolidinones. Indian Journal of Pharmaceutical Sciences, 64, 501–504.Google Scholar
  4. Bao, L., & Kimzey, A. (2004). Photochemotherapeutic compounds for use in treatment of Pin1-associated states. WO Patent No. WO2004093803. Geneva, Switzerland: World Intellectual Property Organization.Google Scholar
  5. Blackwell, H. E. (2003). Out of the oil bath and into the oven-microwave-assisted combinatorial chemistry heats up. Organic & Biomolecular Chemistry, 1, 1251–1255. DOI: 10.1039/b301432k.CrossRefGoogle Scholar
  6. Bourahla, K., Derdour, A., Rahmouni, M., Carreaux, F., & Bazureau, J. P. (2007). A practical access to novel 2-amino-5-arylidene-1,3-thiazol-4(5H)-ones via sulfur/nitrogen displacement under solvent-free microwave irradiation. Tetrahedron Letters, 48, 5785–5789. DOI: 10.1016/j.tetlet.2007.06.078.CrossRefGoogle Scholar
  7. Brown, F. C. (1961). 4-Thiazolidinones. Chemical Reviews, 61, 463–521. DOI: 10.1021/cr60213a002.CrossRefGoogle Scholar
  8. Bulic, B., Pickhardt, M., Schmidt, B., Mandelkow, E.-M., Waldmann, H., & Mandelkow, E. (2009). Development of tau aggregation inhibitors for Alzheimer’s disease. Angewandte Chemie International Edition, 48, 1740–1752. DOI: 10.1002/anie.200802621.CrossRefGoogle Scholar
  9. Carlson, E. E., May, J. F., & Kiessling, L. L. (2006). Chemical probes of UDP-galactopyranose mutase. Chemistry & Biology, 13, 825–837. DOI: 10.1016/j.chembiol.2006.06.007.CrossRefGoogle Scholar
  10. Commarmot, R., Didenot, D., & Gardais, J.-F. (1985). Appareil de minéralisation pour le traitement individuel, de façon automatique, d’échantillons de produits placés dans des récipients. FR Patent No. FR2560686. Paris, France: Institut National de la Propriété Industrielle.Google Scholar
  11. Degterev, A., Lugovskoy, A., Cardone, M., Mulley, B., Wagner, G., Mitchison, T., & Yuan, J. (2001). Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-XL. Nature Cell Biology, 3, 173–182. DOI: 10.1038/35055085.CrossRefGoogle Scholar
  12. Edwards, B. S., Bologa, C., Young, S. M., Balakin, K. V., Prossnitz, E. R., Savchuck, N. P., Sklar, L. A., & Oprea, T. I. (2005). Integration of virtual screening with high-throughput flow cytometry to identify novel small molecule formylpeptide receptor antagonists. Molecular Pharmacology, 68, 1301–1310. DOI: 10.1124/mol.105.014068.CrossRefGoogle Scholar
  13. Fujishima, H., & Tsubota, K. (2002). Improvement of corneal fluorescein staining in post cataract surgery of diabetic patients by an oral aldose reductase inhibitor, ONO-2235. British Journal of Ophtalmology, 86, 860–863. DOI: 10.1136/bjo.86.8.860.CrossRefGoogle Scholar
  14. Gaonkar, S. L., & Shimizu, H. (2010). Microwave-assisted synthesis of the antihyperglycemic drug rosiglitazone. Tetrahedron, 66, 3314–3317. DOI: 10.1016/j.tet.2010.03.006.CrossRefGoogle Scholar
  15. Gränacher, C., & Mahal, A. (1923). Über die verwendung des rhodanins zu organischen synthesen III. Derivate des oxindols. Helvetica Chimica Acta, 6, 467–482. DOI: 10.1002/hlca.19230060149.CrossRefGoogle Scholar
  16. Grant, E. B., Guiadeen, D., Baum, E. Z., Foleno, B. D., Jin, H., Montenegro, D. A., Nelson, E. A., Bush, K., & Hlasta, D. J. (2000). The synthesis and SAR of rhodanines as novel class C β-lactamase inhibitors. Bioorganic & Medicinal Chemistry Letters, 10, 2179–2182. DOI: 10.1016/S0960-894X(00)00444-3.CrossRefGoogle Scholar
  17. Hotta, N., Akanuma, Y., Kawamori, R., Matsuoka, K., Oka, Y., Shichiri, M., Toyota, T., Nakashima, M., Yoshimura, I., Sakamoto, N., & Shigeta, Y. (2006). Long-term clinical effects of Epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: The 3-year, multicenter, comparative aldose reductase inhibitor-diabetes complications trial. Diabetes Care, 29, 1538–1544. DOI: 10.2337/dc05-2370.CrossRefGoogle Scholar
  18. Hu, Y., Helm, J. S., Chen, L., Ginsberg, C., Gross, B., Kraybill, B., Tiyanont, K., Fang, X., Wu, T., & Walker, S. (2004). Identification of selective inhibitors for the glucosyltransferase MurG via high-throughput screening. Chemistry & Biology, 11, 703–711. DOI: 10.1016/j.chembiol.2004.02.024.CrossRefGoogle Scholar
  19. Jacquault, P. (1993). Procédé de mesure de la température d’un échantillon placé dans un récipient d’un appareil d’application de micro-ondes et appareil mettant en oeuvre ledit procédé. FR Patent No. FR2685478. Paris, France: Institut National de la Propriété Industrielle.Google Scholar
  20. Johnson, S. L., Chen, L.-H., Harbach, R., Sabet, M., Savinov, A., Cotton, N. J. H., Strongin, A., Guiney, D., & Pellecchia, M. (2008). Rhodanine derivatives as selective protease inhibitors against bacterial toxins. Chemical Biology & Drug Design, 71, 131–139. DOI: 10.1111/j.1747-0285.2007.00617.x.CrossRefGoogle Scholar
  21. Jones, H. A., & Hann, R. M. (1928). The condensation of rhodanic acids with 5-nitro-isatin. Rhodanal-Δ-5,3′-5′-nitrooxindoles. Journal of the American Chemical Society, 50, 2491–2493. DOI: 10.1021/ja01396a025.CrossRefGoogle Scholar
  22. Lanni, T. B., Jr., Greene, K. L., Kolz, C. N., Para, K. S., Visnick, M., Mobley, J. L., Dudley, D. T., Baginski, T. J., & Liimatta, M. B. (2007). Design and synthesis of phenethyl benzo[1,4]oxazine-3-ones as potent inhibitors of PI3Kinaseγ. Bioorganic and Medicinal Chemistry Letters, 17, 756–760. DOI: 10.1016/j.bmcl.2006.10.080.CrossRefGoogle Scholar
  23. Larhed, M., & Hallberg, A. (2001). Microwave-assisted high-speed chemistry: a new technique in drug discovery. Drug Discovery Today, 6, 406–416. DOI: 10.1016/S1359-6446(01)01735-4.CrossRefGoogle Scholar
  24. Lesyk, R. B., & Zimenkovsky, B. S. (2004). 4-Thiazolidones: Centenarian history, current status and perspectives for modern organic and medicinal chemistry. Current Organic Chemistry, 8, 1547–1577. DOI: 10.2174/1385272043369773.CrossRefGoogle Scholar
  25. Lohray, B. B., Bhushan, V., Rao, P. B., Madhavan, G. R., Murali, N., Rao, K. N., Reddy, K. A., Rajesh, B. M., Reddy, P. G., Chakrabarti, R., & Rajagopalan, R. (1997). Novel indole containing thiazolidinedione derivatives as potent euglycemic and hypolipidaemic agents. Bioorganic & Medicinal Chemistry Letters, 7, 785–788. DOI: 10.1016/S0960-894X(97)00118-2.CrossRefGoogle Scholar
  26. Loupy, A. (Ed.) (2006). Microwave in organic chemistry (2nd ed.). Weinheim, Germany: Wiley-VCH.Google Scholar
  27. Mallick, S. K., Martin, A. R., & Lingard, R. G. (1971). Synthesis and antimicrobial evaluation of some 5-(5-nitrofurylidene) rhodanines, 5-(5-nitrofurylidene)thiazolidine-2,4-diones, and their vinylogs. Journal of Medicinal Chemistry, 14, 528–532. DOI: 10.1021/jm00288a017.CrossRefGoogle Scholar
  28. McKee, T. D., Suto, R. K., Tibbitts, T., & Sowadski, J. (2004). Pin-1 modulating compounds and methods of use thereof. WO Patent No.WO2004028535. Geneva, Switzerland: World Intellectual Property Organization.Google Scholar
  29. Melnick, A. M., MacKerell, A. D., Jr., & Prive, G. G. (2008). Small molecule inhibitors of BCL6. WO Patent No. WO 2008066887. Geneva, Switzerland: World Intellectual Property Organization.Google Scholar
  30. Momose, Y., Meguro, K., Ikeda, H., Hatanaka, C., Oi, S., & Sohda, T. (1991). Studies on antidiabetic agents. X. Synthesis and biological activities of pioglitazone and related compounds. Chemical & Pharmaceutical Bulletin, 39, 1440–1445.Google Scholar
  31. Ohishi, Y., Mukai, T., Nagahara, M., Yajima, M., Kajikawa, N., Miyahara, K., & Takano, T. (1990). Preparations of 5-alkylmethylidene-3-carboxymethylrhodanine derivatives and their aldose reductase inhibitory activity. Chemical & Pharmaceutical Bulletin, 38, 1911–1919.Google Scholar
  32. Pardasani, R. T., Pardasani, P., Sherry, D., & Chaturvedi, V. (2001). Synthetic and antibacterial studies of rhodanine derivatives with indole-2,3-diones. Indian Journal of Chemistry Section B, 40, 1275–1278.Google Scholar
  33. Polychronopoulos, P., Magiatis, P., Skaltsounis, A.-L., Myrianthopoulos, V., Mikros, E., Tarricone, A., Musacchio, A., Roe, S. M., Pearl, L., Leost, M., Greengard, P., & Meijer, L. (2004). Structural basis for the synthesis of indirubins as potent and selective inhibitors of glycogen synthase kinase-3 and cyclin-dependent kinases. Journal of Medicinal Chemistry, 47, 935–946. DOI: 10.1021/jm031016d.CrossRefGoogle Scholar
  34. Primot, A., Baratte, B., Gompel, M., Borgne, A., Liabeuf, S., Romette, J.-L., Jho, E.-H., Costantini, F., & Meijer, L. (2000). Purification of GSK-3 by affinity chromatography on immobilized axin. Protein Expression and Purification, 20, 394–404. DOI: 10.1006/prep.2000.1321.CrossRefGoogle Scholar
  35. Reinhardt, J., Ferandin, Y., & Meijer, L. (2007). Purification of CK1 by affinity chromatography on immobilised axin. Protein Expression and Purification, 54, 101–109. DOI: 10.1016/j.pep.2007.02.020.CrossRefGoogle Scholar
  36. Sawayama, T., Kinugasa, H., & Nishimura, H. (1976). The structures of isatylidene 3 mercaptoacetic acid and its related compounds. Chemical & Pharmaceutical Bulletin, 24, 2305–2311.Google Scholar
  37. Sim, M. M., Ng, S. B., Buss, A. D., Crasta, S. C., Goh, K. L., & Lee, S. K. (2002). Benzylidene rhodanines as novel inhibitors of UDP-N-acetylmuramate/l-alanine ligase. Bioorganic & Medicinal Chemistry Letters, 12, 697–699. DOI: 10.1016/S0960-894X(01)00832-0.CrossRefGoogle Scholar
  38. Sing, W. T., Lee, C. L., Yeo, S. L., Lim, S. P., & Sim, M. M. (2001). Arylalkylidene rhodanine with bulky and hydrophobic functional group as selective HCV NS3 protease inhibitor. Bioorganic & Medicinal Chemistry Letters, 11, 91–94. DOI: 10.1016/S0960-894X(00)00610-7.CrossRefGoogle Scholar
  39. Sortino, M., Delgado, P., Juárez, S., Quiroga, J., Abonía, R., Insuasty, B., Nogueras, M., Rodero, L., Garibotto, F. M., Enriz, R. D., & Zacchino, S. A. (2007). Synthesis and antifungal activity of (Z)-5-arylidenerhodanines. Bioorganic & Medicinal Chemistry, 15, 484–494. DOI: 10.1016/j.bmc.2006.09.038.CrossRefGoogle Scholar
  40. Swewczuk, L. M., Saldanha, S. A., Ganguly, S., Bowers, E. M., Javoroncov, M., Karanam, B., Culhane, J. C., Holbert, M. A., Klein, D. C., Abagyan, R., & Cole, P. A. (2007). De novo discovery of serotonin N-acetyltransferase inhibitors. Journal of Medicinal Chemistry, 50, 5330–5338. DOI: 10.1021/jm0706463.CrossRefGoogle Scholar
  41. Turkevich, N. M., Agaev, K. A., Steblyuk, P. N., & Sementsiv, G. N. (1982). Thiazolidines with adamantyl substituents. Pharmaceutical Chemistry Journal, 16, 668–670.CrossRefGoogle Scholar
  42. Whitesitt, C. A., Simon, R. L., Reel, J. K., Sigmund, S. K., Phillips, M. L., Shadle, J. K., Heinz, L. J., Koppel, G. A., Hunden, D. C., Lifer, S. L., Berry, D., Ray, J., Little, S. P., Liu, X., Marshall, W. S., & Panetta, J. A. (1996). Synthesis and structure-activity relationships of benzophenones as inhibitors of cathepsin D. Bioorganic & Medicinal Chemistry Letters, 6, 2157–2162. DOI: 10.1016/0960-894X(96)00393-9.CrossRefGoogle Scholar
  43. Yang, D.-H., Chen, Z.-C., Chen, S.-Y., & Zheng, Q.-G. (2003). A convenient synthesis of 5-benzylidenethiazolidine-2,4-diones under microwave irradiation without solvent. Journal of Chemical Research, 2003, 330–331. DOI: 10.3184/030823403 103174272.CrossRefGoogle Scholar
  44. Zapadnyuk, V. I. (1966). Anticonvulsive drugs, their classification and mechanism of action. Vrachebnoe Delo (Kiev), 10, 71–75.Google Scholar
  45. Zapadnyuk, V. I. (1962). The dependence of anticonvulsion activity and toxicity of thiohydantoin and rhodanine derivatives on the chemical structure. Farmatsevticheskii Zhurnal (Kiev), 17, 36–41.Google Scholar
  46. Zawahir, Z., Dayam, R., Deng, J., Pereira, C., & Neamati, N. (2009). Pharmacophore guided discovery of smallmolecule human apurinic/apyrimidinic endonuclease 1 inhibitors. Journal of Medicinal Chemistry, 52, 20–32. DOI: 10.1021/jm800739m.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2010

Authors and Affiliations

  • Abdelmounaim Safer
    • 1
  • Mustapha Rahmouni
    • 1
  • François Carreaux
    • 2
  • Ludovic Paquin
    • 2
  • Olivier Lozach
    • 3
  • Laurent Meijer
    • 3
  • Jean Pierre Bazureau
    • 2
    Email author
  1. 1.Laboratoire de Synthèse et de CatalyseUniversité Ibn KhaldounTiaretAlgérie
  2. 2.Groupe Ingénierie Chimique et Molécules pour le Vivant (ICMV), Laboratoire Sciences Chimiques de RennesUMR CNRS 6226Rennes CedexFrance
  3. 3.Protein Phosphorylation and Human Disease, Station Biologique de RoscoffCNRSRoscoff CedexFrance

Personalised recommendations