Skip to main content
Log in

Effect of CeO2 and Sb2O3 on the phase transformation and optical properties of photostable titanium dioxide

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In the present work, the effect of individual additives calculated as molar fractions of Sb2O3 and CeO2 (x Sb 2O3 range: 0.03–0.08 %, x CeO 2 range: 0.05–0.14 %), on the phase composition, phase transformation, and optical properties of photostable rutile titanium dioxide was studied using selective leaching method, ICP-AES technique, XRD method, spectrophotometric analysis and S BET measurements. The starting material was hydrated titanium dioxide. It was observed that the addition of Sb2O3 to TiO2 did not influence the anatase-rutile phase transformation, but increasing the CeO2 addition caused a decrease in the rutilization degree. Thus, CeO2 acted as an inhibitor of the TiO2 phase transformation. Sb2O3 addition to TiO2 presumably caused the formation of a co-phase of Sb with Ti. Cerium formed a separate phase, CeO2, and reacted partly with titanium, probably creating co-phase, Ce0.8Ti0.2O2. Comparing the colour of modified rutile titanium dioxide according to the type of the additive introduced, it was found that TiO2 with CeO2 had higher brightness but lower white tone values when compared with TiO2 modified with Sb2O3. The relative lightening power and grey tone of the modified TiO2 were higher in TiO2 modified with Sb2O3. The values of the photocatalytic activity measured in all TiO2 samples modified either with Sb2O3 or CeO2 were very similar and varied around the value of 21.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, R. (2007). TiO2 report — more choice for buyers — Reg Adams provides an overview of the total world TiO2 pigment consumption. Polymers Paint Color Journal, 197, 35–36.

    Google Scholar 

  • Borgarello, E., Kiwi, J., Pelizzetti, E., Visca, M., & Graetzel, M. (1981). Sustained water cleavage by visible light. Journal of the American Chemical Society, 103, 6324–6329. DOI: 10.1021/ja00411a010.

    Article  CAS  Google Scholar 

  • Cai, T., Liao, Y., Peng, Z., Long, Y., Wei, Z., & Deng, Q. (2009). Photocatalytic performance of TiO2 catalysts modified by H3PW12O40, ZrO2 and CeO2. Journal of Environmental Sciences, 21, 997–1004. DOI: 10.1016/S1001-0742(08)62374-8.

    Article  CAS  Google Scholar 

  • Choi, W., Termin, A., & Hoffmann, M. R. (1994). The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. Journal of Physical Chemistry, 98, 13669–13679. DOI: 10.1021/j100102a038.

    Article  Google Scholar 

  • Colón, G., Sánchez-España, J. M., Hidalgo, M. C., & Navío, J. A. (2006). Effect of TiO2 acidic pre-treatment on the photocatalytic properties for phenol degradation. Journal of Photochemistry and Photobiology A: Chemistry, 179, 20–27. DOI: 10.1016/j.jphotochem.2005.07.007.

    Article  Google Scholar 

  • Cunningham, J., & Srijaranai, S. (1988). Isotope-effect evidence for hydroxyl radical involvement in alcohol photo-oxidation sensitized by TiO2 in aqueous suspension. Journal of Photochemistry and Photobiology A: Chemistry, 43, 329–335. DOI: 10.1016/1010-6030(88)80029-7.

    Article  CAS  Google Scholar 

  • Dąbrowski, W., Tymejczyk, A., & Lubkowska, A. (2006). Właściwości i zastosowanie pigmentów dwutlenku tytanu (Properties and application of titanium dioxide pigments). Police, Poland: Chemical Plant “Police” S.A.

    Google Scholar 

  • Diebold, M. P. (1995a). The causes and prevention of titanium-dioxide induced photodegradation of paints. Part I: Theoretical considerations and durability. Surface Coatings International, 6, 250–256.

    Google Scholar 

  • Diebold, M. P. (1995b). The causes and prevention of titanium-dioxide induced photodegradation of paints. Part II: Durability enhancement. Surface Coatings International, 7, 294–299.

    Google Scholar 

  • Ding, X.-Z., & Liu, X.-H. (1998). Correlation between anatase-to-rutile transformation and grain growth in nanocrystalline titania powders. Journal of Materials Research, 13, 2556–2559. DOI: 10.1557/JMR.1998.0356.

    Article  CAS  Google Scholar 

  • Escribano, V. S., Busca, G., & Lorenzelli, V. (1991). FT-IR studies of the reactivity of vanadia-titania catalysts toward olefins. 3. Butenes and isobutene. The Journal of Physical Chemistry, 95, 5541–5545. DOI: 10.1021/j100167a033.

    Article  Google Scholar 

  • Fang, J., Bi, X., Si, D., Jiang, Z., & Huang, W. (2001). Spectroscopic studies of interfacial structures of CeO2-TiO2 mixed oxides. Applied Surface Science, 253, 8952–8961. DOI: 10.1016/j.apsusc.2007.05.013.

    Article  Google Scholar 

  • Fox, M. A. (1983). Organic heterogeneous photocatalysis: chemical conversions sensitized by irradiated semiconductors. Accounts of Chemical Research, 16, 314–321. DOI: 10.1021/ar00093a001.

    Article  CAS  Google Scholar 

  • Francisco, M. S. P., Mastelaro, V. R., Nascente, P. A. P., & Florentino, A. O. (2001). Activity and characterization by XPS, HR-TEM, Raman spectroscopy, and BET surface area of CuO/CeO2-TiO2 catalysts. The Journal of Physical Chemistry B, 105, 10515–10522. DOI: 10.1021/jp0109675.

    Article  CAS  Google Scholar 

  • Gouma, P. I., & Mills, M. J. (2001). Anatase-to rutile transformation in titania powders. Journal of the American Ceramic Society, 84, 619–622. DOI: 10.1111/j.1151-2916.2001.tb00709.x.

    Article  CAS  Google Scholar 

  • Gribb, A. A., & Banfield, J. F. (1997). Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. American Mineralogist, 82, 717–728.

    CAS  Google Scholar 

  • Grzmil, B., Kic, B., & Rabe, M. (2004). Inhibition of the anatase—rutile phase transformation with addition of K2O, P2O5, and Li2O. Chemical Papers, 58, 410–414.

    CAS  Google Scholar 

  • Hu, Y., Zhang, H., & Yang, H. (2007). Direct synthesis of Sb2O3 nanoparticles via hydrolysis-precipitation method. Journal of Alloys and Compounds, 428, 327–331. DOI: 10.1016/j.jallcom.2006.03.057.

    Article  CAS  Google Scholar 

  • Jacobson, H. W. (1995). Lightfast titanium oxide pigment. WO Patent No. 95/12638. World Intellectual Property Organization, International Bureau.

  • Jha, A. K., Prasad, K., & Prasad, K. (2009). A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochemical Engineering Journal, 43, 303–306. DOI: 10.1016/j.bej.2008.10.016.

    Article  CAS  Google Scholar 

  • Jiang, B., Zhang, S., Guo, X., Jin, B., & Tian, Y. (2009). Preparation and photocatalytic activity of CeO2/TiO2 interface composite film. Applied Surface Science, 255, 5975–5978. DOI: 10.1016/j.apsusc.2009.01.049.

    Article  CAS  Google Scholar 

  • Kalevaru, V. N., Benhmid, A., Radnik, J., Lücke, B., & Martin, A. (2006). Effect of Sb loading on Pd nanoparticles and its influence on the catalytic performance of Sb-Pd/TiO2 solids for acetoxylation of toluene. Journal of Catalysis, 243, 25–35. DOI: 10.1016/j.jcat.2006.06.023.

    Article  CAS  Google Scholar 

  • Karvinen, S. M. (2003). The effects of trace element doping on the optical properties and photocatalytic activity of nanostructured titanium dioxide. Industrial & Engineering Chemistry Research, 42, 1035–1043. DOI: 10.1021/ie020358z.

    Article  CAS  Google Scholar 

  • Kiwi, J., & Morrison, C. (1984). Heterogeneous photocatalysis. Dynamics of charge transfer in lithium-doped anatase-based catalyst powders with enhanced water photocleavage under ultraviolet irradiation. The Journal of Physical Chemistry, 88, 6146–6152. DOI: 10.1021/j150669a018.

    Article  CAS  Google Scholar 

  • Körösi, L., & Dékány, I. (2006). Preparation and investigation of structural and photocatalytic properties of phosphate modified titanium dioxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 280, 146–154. DOI: 10.1016/j.colsurfa.2006.01.052.

    Article  Google Scholar 

  • Kumar, K.-N. P. (1995). Growth of rutile crystallites during the initial stage of anatase-to-rutile transformation in pure titania and in titania-alumina nanocomposites. Scripta Metallurgica et Materialia, 32, 873–877. DOI: 10.1016/0956-716X(95)93217-R.

    Article  CAS  Google Scholar 

  • Lee, W., Do, Y. R., Dwight, K., & Wold, A. (1993). Enhancement of photocatalytic activity of titanium (IV) oxide with molybdenum (VI) oxide. Materials Research Bulletin, 28, 1127–1134. DOI: 10.1016/0025-5408(93)90092-R.

    Article  CAS  Google Scholar 

  • Lendzion-Bieluń, Z., & Arabczyk, W. (2001). Method for determination of the chemical composition of phases of the iron catalyst precursor for ammonia synthesis. Applied Catalysis A: General, 207, 37–41. DOI: 10.1016/S0926-860X(00)00614-1.

    Article  Google Scholar 

  • Lewis, P. A. (1988). Pigment handbook. Properties and economics. Toronto, Canada: Wiley.

    Google Scholar 

  • Lin, J., & Yu, J. C. (1998). An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air. Journal of Photochemistry and Photobiology A: Chemistry, 116, 63–67. DOI: 10.1016/S1010-6030(98)00289-5.

    Article  CAS  Google Scholar 

  • Luo, M., Chen, J., Chen, L., & Lu, J. (2001). Structure and redox properties of CexTi1−xO2 solid solution. Chemistry of Materials, 13, 197–202. DOI: 10.1021/cm000470s.

    Article  CAS  Google Scholar 

  • Moser, J., Grätzel, M., & Gallay, R. (1987). Inhibition of electron-hole recombination in substitutionally doped colloidal semiconductor crystallites. Helvetica Chimica Acta, 70, 1596–1604. DOI: 10.1002/hlca.19870700617.

    Article  CAS  Google Scholar 

  • O’Neil, M. J. (2010). The Merck index: An encyclopedia of chemicals, drugs, and biologicals. New York, NY, USA: Merck Sharp & Dohme Corp.

    Google Scholar 

  • Palmisano, L., Augugliaro, V., Sclafani, A., & Schiavello, M. (1988). Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation. The Journal of Physical Chemistry, 92, 6710–6713. DOI: 10.1021/j100334a044.

    Article  CAS  Google Scholar 

  • Patrick, R. F. (2006). Some factors affecting the opacity, color, and color stability of titania-opacified enamels. Journal of the American Ceramic Society, 34, 96–102. DOI: 10.1111/j.1151-2916.1951.tb13493.x.

    Article  Google Scholar 

  • Pavasupree, S., Suzuki, Y., Pivsa-Art, S., & Yoshikawa, S. (2005). Preparation and characterization of mesoporous TiO2-CeO2 nanopowders respond to visible wavelength. Journal of Solid State Chemistry, 178, 128–134. DOI: 10.1016/j.jssc.2004.10.028.

    Article  CAS  Google Scholar 

  • Pillep, B., Behrens, P., Schubert, U.-A., Spengler, J., & Knözinger, H. (1999). Mechanical and thermal spreading of antimony oxides on the TiO2 surface: Dispersion and properties of surface antimony oxide species. The Journal of Physical Chemistry B, 103, 9595–9603. DOI: 10.1021/jp991441b.

    Article  CAS  Google Scholar 

  • Reddy, R. R., Ahammed, Y. N., Gopal, K. R., & Raghuram, D. V. (1998). Optical electronegativity and refractive index of materials. Optical Materials, 10, 95–100. DOI: 10.1016/S0925-3467(97)00171-7.

    Article  CAS  Google Scholar 

  • Satyanarayana, T., Kityk, I. V., Ozga, K., Piasecki, M., Bragiel, P., Brik, M. G., Kumar, V. R., Reshak, A. H., & Veeraiah, N. (2009). Role of titanium valence states in optical and electronic features of PbO-Sb2O3-B2O3:TiO2 glass alloys. Journal of Alloys and Compounds, 482, 283–297. DOI: 10.1016/j.jallcom.2009.03.185.

    Article  CAS  Google Scholar 

  • Sheinkman, A. I., Gol’dshtein, L. M., Turlakov, V. N., & Kleshchev, G. V. (1972). Phase formations during the interaction of antimony oxides with hydrated titanium dioxide. Zhurnal Prikladnoi Khimii, 45, 940–944.

    CAS  Google Scholar 

  • Suresh, C., Biju, V., Mukundan, P., & Warrier, K. G. K. (1998). Anatase to rutile transformation in sol-gel titania by modification of precursor. Polyhedron, 17, 3131–3135. DOI: 10.1016/S0277-5387(98)00077-1.

    Article  CAS  Google Scholar 

  • Teixeira, S., & Bernardin, A. M. (2009). Development of TiO2 white glazes for ceramic tiles. Dyes and Pigments, 80, 292–296. DOI: 10.1016/j.dyepig.2008.07.017.

    Article  CAS  Google Scholar 

  • Thampi, K. R., Kiwi, J., & Grätzel, M. (1988). Room temperature photo-activation of methane on TiO2 supported molybdena. Catalysis Letters, 1, 109–116. DOI: 10.1007/BF00765891.

    Article  CAS  Google Scholar 

  • Toro, R. G., Malandrino, G., Fragalà, I. L., Lo Nigro, R., Losurdo, M., & Bruno, G. (2004). Relationship between the nanostructures and the optical properties of CeO2 thin films. The Journal of Physical Chemistry B, 108, 16357–16364. DOI: 10.1021/jp048083j.

    Article  CAS  Google Scholar 

  • Trovarelli, A. (1996). Catalytic properties of ceria and CeO2-containing materials. Catalysis Reviews: Science and Engineering, 38, 439–520. DOI: 10.1080/01614949608006464.

    Article  CAS  Google Scholar 

  • Tyler, F. K. (2000). Tailoring TiO2 treatment chemistry to achieve desired performance properties. Paint & Coating Industry, 16, 32.

    Google Scholar 

  • Winkler, J. (2003). Titanium dioxide. Hannover, Germany: Vincentz Network.

    Google Scholar 

  • Wold, A. (1993). Photocatalytic properties of titanium dioxide (TiO2). Chemistry of Materials, 5, 280–283. DOI: 10.1021/cm00027a008.

    Article  CAS  Google Scholar 

  • Ye, C., Wang, G., Kong, M., & Zhang, L. (2006). Controlled synthesis of Sb2O3 nanoparticles, nanowires and nanoribbon. Journal of Nanomaterials, 2006,95670, 1–5. DOI: 10.1155/JNM/2006/95670.

    Article  Google Scholar 

  • Yu, J. C., Lin, J., & Kwok, R. W. M. (1998). Ti1−x ZrxO2 solid solutions for the photocatalytic degradation of acetone in air. The Journal of Physical Chemistry B, 102, 5094–5098. DOI: 10.1021/jp980332e.

    Article  CAS  Google Scholar 

  • Zeng, D. W., Zhu, B. L., Xie, C. S., Song, W. L., & Wang, A. H. (2004). Oxygen partial pressure effect on synthesis and characteristics of Sb2O3 nanoparticles. Materials Science and Engineering A, 366, 332–337. DOI: 10.1016/j.msea.2003.08.044.

    Article  Google Scholar 

  • Zhang, H. J., & Wen, D. Z. (2007). Antibacterial properties of Sb-TiO2 thin films by RF magnetron co-sputtering. Surface and Coatings Technology, 201, 5720–5723. DOI: 10.1016/j.surfcoat.2006.07.109.

    Article  CAS  Google Scholar 

  • Zhao, W., Ma, W., Chen, C., Zhao, J., & Shuai, Z. (2004). Efficient degradation of toxic organic pollutants with Ni2O3/TiO2−x Bx under visible irradiation. Journal of the American Ceramic Society, 126, 4782–4783. DOI: 10.1021/ja0396753.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Gleń.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gleń, M., Grzmil, B., Sreńscek-Nazzal, J. et al. Effect of CeO2 and Sb2O3 on the phase transformation and optical properties of photostable titanium dioxide. Chem. Pap. 65, 203–212 (2011). https://doi.org/10.2478/s11696-010-0103-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-010-0103-x

Keywords

Navigation