Advertisement

Chemical Papers

, Volume 65, Issue 3, pp 251–266 | Cite as

Steam-reforming of ethanol for hydrogen production

  • Ahmed Bshish
  • Zahira Yaakob
  • Binitha NarayananEmail author
  • Resmi Ramakrishnan
  • Ali Ebshish
Review

Abstract

Production of hydrogen by steam-reforming of ethanol has been performed using different catalytic systems. The present review focuses on various catalyst systems used for this purpose. The activity of catalysts depends on several factors such as the nature of the active metal catalyst and the catalyst support, the precursor used, the method adopted for catalyst preparation, and the presence of promoters as well as reaction conditions like the water-to-ethanol molar ratio, temperature, and space velocity. Among the active metals used to date for hydrogen production from ethanol, promoted-Ni is found to be a suitable choice in terms of the activity of the resulting catalyst. Cu is the most commonly used promoter with nickel-based catalysts to overcome the inactivity of nickel in the water-gas shift reaction. γ-Al2O3 support has been preferred by many researchers because of its ability to withstand reaction conditions. However, γ-Al2O3, being acidic, possesses the disadvantage of favouring ethanol dehydration to ethylene which is considered to be a source of carbon deposit found on the catalyst. To overcome this difficulty and to obtain the long-term catalyst stability, basic oxide supports such as CeO2, MgO, La2O3, etc. are mixed with alumina which neutralises the acidic sites. Most of the catalysts which can provide higher ethanol conversion and hydrogen selectivity were prepared by a combination of impregnation method and sol-gel method. High temperature and high water-to-ethanol molar ratio are two important factors in increasing the ethanol conversion and hydrogen selectivity, whereas an increase in pressure can adversely affect hydrogen production.

Keywords

steam-reforming hydrogen production catalytic system ethanol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboudheir, A., Akande, A., Idem, R., & Dalai, A. (2006). Experimental studies and comprehensive reactor modeling of hydrogen production by the catalytic reforming of crude ethanol in a packed bed tubular reactor over a Ni/Al2O3 catalyst. International Journal of Hydrogen Energy, 31, 752–761. DOI: 10.1016/j.ijhydene.2005.06.020.CrossRefGoogle Scholar
  2. Akande, A. J., Idem, R. O., & Dalai, A. K. (2005). Synthesis, characterization and performance evaluation of Ni/Al2O3 catalysts for reforming of crude ethanol for hydrogen production. Applied Catalysis A: General, 287, 159–175. DOI: 10.1016/j.apcata.2005.03.046.CrossRefGoogle Scholar
  3. Akpan, E., Akande, A., Aboudheir, A., Ibrahim, H., & Idem, R. (2007). Experimental, kinetic and 2-D reactor modeling for simulation of the production of hydrogen by the catalytic reforming of concentrated crude ethanol (CRCCE) over a Ni-based commercial catalyst in a packed-bed tubular reactor. Chemical Engineering Science, 62, 3112–3126. DOI: 10.1016/j.ces.2007.03.006.CrossRefGoogle Scholar
  4. Alberton, A. L., Souza, M. M. V. M., & Schmal, M. (2007). Carbon formation and its influence on ethanol steam reforming over Ni/Al2O3 catalysts. Catalysis Today, 123, 257–264. DOI: 10.1016/j.cattod.2007.01.062.CrossRefGoogle Scholar
  5. Alstrup, I., Tavares, M. T., Bernardo, C. A., Sørensen, O., & Rostrup-Nielsen, J. R. (1998). Carbon formation on nickel and nickel-copper alloy catalysts. Materials and Corrosion, 49, 367–372. DOI: 10.1002/(SICI)1521-4176(199805).CrossRefGoogle Scholar
  6. Aupretre, F., Descorme, C., & Duprez, D. (2004). Hydrogen production for fuel cells from the catalytic ethanol steam reforming. Topics in Catalysis, 30–31, 487–492. DOI: 10.1023/B:TOCA.0000029842.71967.fc.CrossRefGoogle Scholar
  7. Auprêtre, F., Descorme, C., & Duprez, D. (2002). Bio-ethanol catalytic steam reforming over supported metal catalysts. Catalysis Communications, 3, 263–267. DOI: 10.1016/S1566-7367(02)00118-8.CrossRefGoogle Scholar
  8. Aupretre, F., Descorme, C., & Duprez, D. (2001). Le vaporeformage catalytique: application a la production embarquee d’hydrogene a partir d’hydrocarbures ou d’alcools. Annales de Chimie Science des Matériaux, 26, 93–106. DOI: 10.1016/S0151-9107(01)80073-8.CrossRefGoogle Scholar
  9. Aupretre, F., Descorme, C., Duprez, D., Casanave, D., & Uzio, D. (2005). Ethanol steam reforming over MgxNi1−xAl2O3 spinel oxide-supported Rh catalysts. Journal of Catalysis, 233, 464–477. DOI: 10.1016/j.jcat.2005.05.007.CrossRefGoogle Scholar
  10. Batista, M. S., Santos, R. K. S., Assaf, E. M., Assaf, J. M., & Ticianelli, E. A. (2004). High efficiency steam reforming of ethanol by cobalt-based catalysts. Journal of Power Sources, 134, 27–32. DOI: 10.1016/j.jpowsour.2004.01.052.CrossRefGoogle Scholar
  11. Batista, M. S., Santos, R. K. S., Assaf, E. M., Assaf, J. M., & Ticianelli, E. A. (2003). Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol. Journal of Power Sources, 124, 99–103. DOI: 10.1016/S0378-7753(03)00599-8.CrossRefGoogle Scholar
  12. Benito, M., Padilla, R., Rodríguez, L., Sanz, J. L., & Daza, L. (2007). Zirconia supported catalysts for bioethanol steam reforming: Effect of active phase and zirconia structure. Journal of Power Sources, 169, 167–176. DOI: 10.1016/j. jpowsour.2007.01.047.CrossRefGoogle Scholar
  13. Benito, M., Sanz, J. L., Isabel, R., Padilla, R., Arjona, R., & Daza, L. (2005). Bio-ethanol steam reforming: Insights on the mechanism for hydrogen production. Journal of Power Sources, 151, 11–17. DOI: 10.1016/j.jpowsour.2005.02.046.CrossRefGoogle Scholar
  14. Bergamaschi, V. S., & Carvalho, F. M. S. (2008). Hydrogen production by ethanol steam reforming over Cu and Ni catalysts supported on ZrO2 and Al2O3 microspheres. Materials Science Forum, 591–593, 734–739. DOI: 10.4028/www.scientific.net/MSF.591-593.734.CrossRefGoogle Scholar
  15. Biswas, P., & Kunzru, D. (2008). Oxidative steam reforming of ethanol over Ni/CeO2-ZrO2 catalyst. Chemical Engineering Journal, 136, 41–49. DOI: 10.1016/j.cej.2007.03.057.CrossRefGoogle Scholar
  16. Breen, J. P., Burch, R., & Coleman, H. M. (2002). Metalcatalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications. Applied Catalysis B: Environmental, 39, 65–74. DOI: 10.1016/S0926-3373(02)00075-9.CrossRefGoogle Scholar
  17. Casanovas, A., Roig, M., de Leitenburg, C., Trovarelli, A., & Llorca, J. (2010). Ethanol steam reforming and water gas shift over Co/ZnO catalytic honeycombs doped with Fe, Ni, Cu, Cr and Na. International Journal of Hydrogen Energy, 35, 7690–7698. DOI: 10.1016/j.ijhydene.2010.05.099.CrossRefGoogle Scholar
  18. Cavallaro, S. (2000). Ethanol steam reforming on Rh/Al2O3 catalysts. Energy Fuels, 14, 1195–1199. DOI: 10.1021/ef0000779.CrossRefGoogle Scholar
  19. Cavallaro, S., Chiodo, V., Freni, S., Mondello, N., & Frusteri, F. (2003). Performance of Rh/Al2O3 catalyst in the steam reforming of ethanol: H2 production for MCFC. Applied Catalysis A: General, 249, 119–128. DOI: 10.1016/S0926-860X(03)00189-3.CrossRefGoogle Scholar
  20. Cavallaro, S., & Freni, S. (1996). Ethanol steam reforming in a molten carbonate fuel cell. A preliminary kinetic investigation. International Journal of Hydrogen Energy, 21, 465–469. DOI: 10.1016/0360-3199(95)00107-7.CrossRefGoogle Scholar
  21. Chang, F.-W., Yang, H.-C., Roselin, L. S., & Kuo, W.-Y. (2006). Ethanol dehydrogenation over copper catalysts on rice husk ash prepared by ion exchange. Applied Catalysis A: General, 304, 30–39. DOI: 10.1016/j.apcata.2006.02.017.CrossRefGoogle Scholar
  22. Chen, S. Q., & Liu, Y. (2009). LaFeyNi1−yO3 supported nickel catalysts used for steam reforming of ethanol. International Journal of Hydrogen Energy, 34, 4735–4746. DOI: 10.1016/j.ijhydene.2009.03.048.CrossRefGoogle Scholar
  23. Ciambelli, P., Palma, V., & Ruggiero, A. (2010). Low temperature catalytic steam reforming of ethanol. 2. Preliminary kinetic investigation of Pt/CeO2 catalysts. Applied Catalysis B: Environmental, 96, 190–197. DOI: 10.1016/j.apcatb.2010.02.019.CrossRefGoogle Scholar
  24. Coleman, L. J. I., Epling, W., Hudgins, R. R., & Croiset, E. (2009). Ni/Mg-Al mixed oxide catalyst for the steam reforming of ethanol. Applied Catalysis A: General, 363, 52–63. DOI: 10.1016/j.apcata.2009.04.032.CrossRefGoogle Scholar
  25. Comas, J., Laborde, M., & Amadeo, N. (2004a). Thermodynamic analysis of hydrogen production from ethanol using CaO as a CO2 sorbent. Journal of Power Sources, 138, 61–67. DOI: 10.1016/j.jpowsour.2004.05.059.CrossRefGoogle Scholar
  26. Comas, J., Mariño, F., Laborde, M., & Amadeo, N. (2004b). Bio-ethanol steam reforming on Ni/Al2O3 catalyst. Chemical Engineering Journal, 98, 61–68. DOI: 10.1016/S1385-8947(03)00186-4.CrossRefGoogle Scholar
  27. de la Peña O’shea, V. A., Homs, N., Pereira, E. B., Nafria, R., & Ramírez de la Piscina, P. (2007). X-ray diffraction study of Co3O4 activation under ethanol steam-reforming. Catalysis Today, 126, 148–152. DOI: 10.1016/j.cattod.2006.10.002.CrossRefGoogle Scholar
  28. de Lima, S.M., da Silva, A.M., da Costa, L. O. O., Graham, U. M., Jacobs, G., Davis, B. H., Mattos, L. V., & Noronha, F. B. (2009). Study of catalyst deactivation and reaction mechanism of steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Co/CeO2 catalyst. Journal of Catalysis, 268, 268–281. DOI: 10.1016/j.jcat.2009.09.025.CrossRefGoogle Scholar
  29. de Lima, S. M., Silva, A. M., da Cruz, I. O., Jacobs, G., Davis, B. H., Mattos, L. V., & Noronha, F. B. (2008). H2 production through steam reforming of ethanol over Pt/ZrO2, Pt/CeO2 and Pt/CeZrO2 catalysts. Catalysis Today, 138, 162–168. DOI: 10.1016/j.cattod.2008.06.014.CrossRefGoogle Scholar
  30. Denis, A., Grzegorczyk, W., Gac, W., & Machocki, A. (2008). Steam reforming of ethanol over Ni/support catalysts for generation of hydrogen for fuel cell applications. Catalysis Today, 137, 453–459. DOI: 10.1016/j.cattod.2008.03.006.CrossRefGoogle Scholar
  31. Descorme, C., Madier, Y., Duprez, D., & Birchem, T. (2000). Surface mobility of oxygen species on mixed-oxides supported metals. In A. Corma, F. V. Melo, S. Mendioroz, & J. L. G. Fierro (Eds.), Studies in Surface Science and Catalysis (Vol. 130, pp. 347–352). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/S0167-2991(00)80981-7.Google Scholar
  32. Diagne, C., Idriss, H., & Kiennemann, A. (2002). Hydrogen production by ethanol reforming over Rh/CeO2-ZrO2 catalysts. Catalysis Communications, 3, 565–571. DOI: 10.1016/S1566-7367(02)00226-1.CrossRefGoogle Scholar
  33. Erdöhelyi, A., Raskó, J., Kecskés, T., Tóth, M., Dömök, M., & Baán, K. (2006). Hydrogen formation in ethanol reforming on supported noble metal catalysts. Catalysis Today, 116, 367–376. DOI: 10.1016/j.cattod.2006.05.073.CrossRefGoogle Scholar
  34. Fatsikostas, A. N., Kondarides, D. I., & Verykios, X. E. (2002). Production of hydrogen for fuel cells by reformation of biomass-derived ethanol. Catalysis Today, 75, 145–155. DOI: 10.1016/S0920-5861(02)00057-3.CrossRefGoogle Scholar
  35. Fatsikostas, A. N., & Verykios, X. E. (2004). Reaction network of steam reforming of ethanol over Ni-based catalysts. Journal of Catalysis, 225, 439–452. DOI: 10.1016/j.jcat.2004.04.034.CrossRefGoogle Scholar
  36. Fierro, V., Akdim, O., & Mirodatos, C. (2003). On-board hydrogen production in a hybrid electric vehicle by bio-ethanol oxidative steam reforming over Ni and noble metal based catalysts. Green Chemistry, 5, 20–24.CrossRefGoogle Scholar
  37. Fierro, V., Klouz, V., Akdim, O., & Mirodatos, C. (2002). Oxidative reforming of biomass derived ethanol for hydrogen production in fuel cell applications. Catalysis Today, 75, 141–144. DOI: 10.1016/S0920-5861(02)00056-1.CrossRefGoogle Scholar
  38. Fishtik, I., Alexander, A., Datta, R., & Geana, D. (2000). A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions. International Journal of Hydrogen Energy, 25, 31–45. DOI: 10.1016/S0360-3199(99)00004-X.CrossRefGoogle Scholar
  39. Freni, S., Cavallaro, S., Mondello, N., Spadaro, L., & Frusteri, F. (2003). Production of hydrogen for MC fuel cell by steam reforming of ethanol over MgO supported Ni and Co catalysts. Catalysis Communications, 4, 259–268. DOI: 10.1016/S1566-7367(03)00051-7.CrossRefGoogle Scholar
  40. Freni, S., Cavallaro, S., Mondello, N., Spadaro, L., & Frusteri, F. (2002). Steam reforming of ethanol on Ni/MgO catalysts: H2 production for MCFC. Journal of Power Sources, 108, 53–57. DOI: 10.1016/S0378-7753(02)00004-6.CrossRefGoogle Scholar
  41. Freni, S., Maggio, G., & Cavallaro, S. (1996). Ethanol steam reforming in a molten carbonate fuel cell: a thermodynamic approach. Journal of Power Sources, 62, 67–73. DOI: 10.1016/S0378-7753(96)02403-2.CrossRefGoogle Scholar
  42. Frusteri, F., Freni, S., Chiodo, V., Spadaro, L., Di Blasi, O., Bonura, G., & Cavallaro, S. (2004a). Steam reforming of bioethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell. Applied Catalysis A: General, 270, 1–7. DOI: 10.1016/j.apcata.2004.03.052.CrossRefGoogle Scholar
  43. Frusteri, F., Freni, S., Spadaro, L., Chiodo, V., Bonura, G., Donato, S., & Cavallaro, S. (2004b). H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts. Catalysis Communications, 5, 611–615. DOI: 10.1016/j.catcom.2004.07.015.CrossRefGoogle Scholar
  44. Galetti, A. E., Gomez, M. F., Arrua, L. A., Marchi, A. J., & Abello, M. C. (2008). Study of CuCoZnAl oxide as catalyst for the hydrogen production from ethanol reforming. Catalysis Communications, 9, 1201–1208. DOI: 10.1016/j.catcom.2007.11.015.CrossRefGoogle Scholar
  45. García, E. Y., & Laborde, M. A. (1991). Hydrogen production by the steam reforming of ethanol: Thermodynamic analysis. International Journal of Hydrogen Energy, 16, 307–312. DOI: 10.1016/0360-3199(91)90166-G.CrossRefGoogle Scholar
  46. Gates, S. M., Russell, J. N., Jr., & Yates, J. T., Jr. (1986). Bond activation sequence observed in the chemisorption and surface reaction of ethanol on Ni(111). Surface Science, 171, 111–134. DOI: 10.1016/0039-6028(86)90565-0.CrossRefGoogle Scholar
  47. Homs, N., Llorca, J., & Ramírez de la Piscina, P. (2006). Low-temperature steam-reforming of ethanol over ZnO-supported Ni and Cu catalysts: The effect of nickel and copper addition to ZnO-supported cobalt-based catalysts. Catalysis Today, 116, 361–366. DOI: 10.1016/j.cattod.2006.05.081.CrossRefGoogle Scholar
  48. Idriss, H. (2004). Ethanol reactions over the surfaces of noble metal/cerium oxide catalysts. Platinum Metals Review, 48, 105–115. DOI: 10.1595/147106704X1603.CrossRefGoogle Scholar
  49. Ioannides, T. (2001). Thermodynamic analysis of ethanol processors for fuel cell applications. Journal of Power Sources, 92, 17–25. DOI: 10.1016/S0378-7753(00)00498-5.CrossRefGoogle Scholar
  50. Jacobs, G., Keogh, R. A., & Davis, B. H. (2007). Steam reforming of ethanol over Pt/ceria with co-fed hydrogen. Journal of Catalysis, 245, 326–337. DOI: 10.1016/j.jcat.2006.10.018.CrossRefGoogle Scholar
  51. Kaddouri, A., & Mazzocchia, C. (2004). A study of the influence of the synthesis conditions upon the catalytic properties of Co/SiO2 or Co/Al2O3 catalysts used for ethanol steam reforming. Catalysis Communications, 5, 339–345. DOI: 10.1016/j.catcom.2004.03.008.CrossRefGoogle Scholar
  52. Klouz, V., Fierro, V., Denton, P., Katz, H., Lisse, J. P., Bouvot-Mauduit, S., & Mirodatos, C. (2002). Ethanol reforming for hydrogen production in a hybrid electric vehicle: process optimisation. Journal of Power Sources, 105, 26–34. DOI: 10.1016/S0378-7753(01)00922-3.CrossRefGoogle Scholar
  53. Le Valant, A., Bion, N., Can, F., Duprez, D., & Epron, F. (2010a). Preparation and characterization of bimetallic Rh-Ni/Y2O3-Al2O3 for hydrogen production by raw bioethanol steam reforming: influence of the addition of nickel on the catalyst performances and stability. Applied Catalysis B: Environmental, 97, 72–81. DOI: 10.1016/j.apcatb.2010.03.025.CrossRefGoogle Scholar
  54. Le Valant, A., Can, F., Bion, N., Duprez, D., & Epron, F. (2010b). Hydrogen production from raw bioethanol steam reforming: Optimization of catalyst composition with improved stability against various impurities. International Journal of Hydrogen Energy, 35, 5015–5020. DOI: 10.1016/j.ijhydene. 2009.09.008.CrossRefGoogle Scholar
  55. Le Valant, A., Garron, A., Bion, N., Epron, F., & Duprez, D. (2008). Hydrogen production from raw bioethanol over Rh/MgAl2O4 catalyst: Impact of impurities: Heavy alcohol, aldehyde, ester, acid and amine. Catalysis Today, 138, 169–174. DOI: 10.1016/j.cattod.2008.06.013.CrossRefGoogle Scholar
  56. Liberatori, J. W. C., Ribeiro, R. U., Zanchet, D., Noronha, F. B., & Bueno, J. M. C. (2007). Steam reforming of ethanol on supported nickel catalysts. Applied Catalysis A: General, 327, 197–204. DOI: 10.1016/j.apcata.2007.05.010.CrossRefGoogle Scholar
  57. Liguras, D. K., Kondarides, D. I., & Verykios, X. E. (2003). Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Applied Catalysis B: Environmental, 43, 345–354. DOI: 10.1016/S0926-3373(02)00327-2.CrossRefGoogle Scholar
  58. Lindo, M., Vizcaíno, A. J., Calles, J. A., & Carrero, A. (2010). Ethanol steam reforming on Ni/Al-SBA-15 catalysts: Effect of the aluminium content. International Journal of Hydrogen Energy, 35, 5895–5901. DOI: 10.1016/j.ijhydene.2009.12.120.CrossRefGoogle Scholar
  59. Liu, J.-Y., Lee, C.-C., Wang, C.-H., Yeh, C.-T., & Wang, C.-B. (2010). Application of nickel-lanthanum composite oxide on the steam reforming of ethanol to produce hydrogen. International Journal of Hydrogen Energy, 35, 4069–4075. DOI: 10.1016/j.ijhydene.2010.01.141.CrossRefGoogle Scholar
  60. Llorca, J., Homs, N., Sales, J., & Ramírez de la Piscina, P. (2002). Efficient production of hydrogen over supported cobalt catalysts from ethanol steam reforming. Journal of Catalysis, 209, 306–317. DOI: 10.1006/jcat.2002.3643.CrossRefGoogle Scholar
  61. Llorca, J., Ramírez de la Piscina, P., Dalmon, J.-A., Sales, J., & Homs, N. (2003). CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts: Effect of the metallic precursor. Applied Catalysis B: Environmental, 43, 355–369. DOI: 10.1016/S0926-3373(02)00326-0.CrossRefGoogle Scholar
  62. Mariño, F., Baronetti, G., Jobbagy, M., & Laborde, M. (2003). Cu-Ni-K/γ-Al2O3 supported catalysts for ethanol steam reforming: Formation of hydrotalcite-type compounds as a result of metal-support interaction. Applied Catalysis A: General, 238, 41–54. DOI: 10.1016/S0926-860X(02)00113-8.CrossRefGoogle Scholar
  63. Mariño, F., Boveri, M., Baronetti, G., & Laborde, M. (2004). Hydrogen production via catalytic gasification of ethanol. A mechanism proposal over copper-nickel catalysts. International Journal of Hydrogen Energy, 29, 67–71. DOI: 10.1016/S0360-3199(03)00052-1.CrossRefGoogle Scholar
  64. Mariño, F., Boveri, M., Baronetti, G., & Laborde, M. (2001). Hydrogen production from steam reforming of bioethanol using Cu/Ni/K/γ-Al2O3 catalysts. Effect of Ni. International Journal of Hydrogen Energy, 26, 665–668. DOI: 10.1016/S0360-3199(01)00002-7.CrossRefGoogle Scholar
  65. Mariño, F. J., Cerrella, E. G., Duhalde, S., Jobbagy, M., & Laborde, M. A. (1998). Hydrogen from steam reforming of ethanol. Characterization and performance of copper-nickel supported catalysts. International Journal of Hydrogen Energy, 23, 1095–1101. DOI: 10.1016/S0360-3199(97)00173-0.CrossRefGoogle Scholar
  66. Mas, V., Kipreos, R., Amadeo, N., & Laborde, M. (2006). Thermodynamic analysis of ethanol/water system with the stoichiometric method. International Journal of Hydrogen Energy, 31, 21–28. DOI: 10.1016/j.ijhydene.2005.04.004.CrossRefGoogle Scholar
  67. Men, Y., Kolb, G., Zapf, R., Hessel, V., & Löwe, H. (2007). Ethanol steam reforming in a microchannel reactor. Process Safety and Environmental Protection, 85, 413–418. DOI: 10.1205/psep07015.CrossRefGoogle Scholar
  68. Muroyama, H., Nakase, R., Matsui, T., & Eguchi, K. (2010). Ethanol steam reforming over Ni-based spinel oxide. International Journal of Hydrogen Energy, 35, 1575–1581. DOI: 10.1016/j.ijhydene.2009.12.083.CrossRefGoogle Scholar
  69. Navarro, R. M., Álvarez-Galván, M. C., Sánchez-Sánchez, M. C., Rosa, F., & Fierro, J. L. G. (2005). Production of hydrogen by oxidative reforming of ethanol over Pt catalysts supported on Al2O3 modified with Ce and La. Applied Catalysis B: Environmental, 55, 229–241. DOI: 10.1016/j.apcatb.2004.09.002.CrossRefGoogle Scholar
  70. Ni, M., Leung, D. Y. C., & Leung, M. K. H. (2007). A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy, 32, 3238–3247. DOI: 10.1016/j.ijhydene.2007.04.038.CrossRefGoogle Scholar
  71. Nishiguchi, T., Matsumoto, T., Kanai, H., Utani, K., Matsumura, Y., Shen, W.-J., & Imamura, S. (2005). Catalytic steam reforming of ethanol to produce hydrogen and acetone. Applied Catalysis A: General, 279, 273–277. DOI: 10.1016/j.apcata.2004.10.035.CrossRefGoogle Scholar
  72. Padilla, R., Benito, M., Rodríguez, L., Serrano, A., Muñoz, G., & Daza, L. (2010). Nickel and cobalt as active phase on supported zirconia catalysts for bio-ethanol reforming: Influence of the reaction mechanism on catalysts performance. International Journal of Hydrogen Energy, 35, 8921–8928. DOI: 10.1016/j.ijhydene.2010.06.021.CrossRefGoogle Scholar
  73. Profeti, L. P. R., Dias, J. A. C., Assaf, J. M., & Assaf, E. M. (2009). Hydrogen production by steam reforming of ethanol over Ni-based catalysts promoted with noble metals. Journal of Power Sources, 190, 525–533. DOI: 10.1016/j.jpowsour.2008.12.104.CrossRefGoogle Scholar
  74. Rabenstein, G., & Hacker, V. (2008). Hydrogen for fuel cells from ethanol by steam-reforming, partial-oxidation and combined auto-thermal reforming: A thermodynamic analysis. Journal of Power Sources, 185, 1293–1304. DOI: 10.1016/j.jpowsour.2008.08.010.CrossRefGoogle Scholar
  75. Raskó, J., Hancz, A., & Erdöhelyi, A. (2004). Surface species and gas phase products in steam reforming of ethanol on TiO2 and Rh/TiO2. Applied Catalysis A: General, 269, 13–25. DOI: 10.1016/j.apcata.2004.03.053.CrossRefGoogle Scholar
  76. Rass-Hansen, J., Johansson, R., Møller, M., & Christensen, C. H. (2008). Steam reforming of technical bioethanol for hydrogen production. International Journal of Hydrogen Energy, 33, 4547–4554. DOI: 10.1016/j.ijhydene.2008.06.020.CrossRefGoogle Scholar
  77. Resini, C., Herrera Delgado, M. C., Presto, S., Alemany, L. J., Riani, P., Marazza, R., Ramis, G., & Busca, G. (2008). Yttria-stabilized zirconia (YSZ) supported Ni-Co alloys (precursor of SOFC anodes) as catalysts for the steam reforming of ethanol. International Journal of Hydrogen Energy, 33, 3728–3735. DOI: 10.1016/j.ijhydene.2008.04.044.CrossRefGoogle Scholar
  78. Resini, C., Montanari, T., Barattini, L., Ramis, G., Busca, G., Presto, S., Riani, P., Marazza, R., Sisani, M., Marmottini, F., & Costantino, U. (2009). Hydrogen production by ethanol steam reforming over Ni catalysts derived from hydrotalcitelike precursors: Catalyst characterization, catalytic activity and reaction path. Applied Catalysis A: General, 355, 83–93. DOI: 10.1016/j.apcata.2008.11.029.CrossRefGoogle Scholar
  79. Romero-Sarria, F., Vargas, J. C., Roger, A.-C., & Kiennemann, A. (2008). Hydrogen production by steam reforming of ethanol: Study of mixed oxide catalysts Ce2Zr1.5Me0.5O8: Comparison of Ni/Co and effect of Rh. Catalysis Today, 133–135, 149–153. DOI: 10.1016/j.cattod.2007.12.084.CrossRefGoogle Scholar
  80. Rossi, C. C. R. S., Alonso, C. G., Antunes, O. A. C., Guirardello, R., & Cardozo-Filho, L. (2009). Thermodynamic analysis of steam reforming of ethanol and glycerine for hydrogen production. International Journal of Hydrogen Energy, 34, 323–332. DOI: 10.1016/j.ijhydene.2008.09.071.CrossRefGoogle Scholar
  81. Sahoo, D. R., Vajpai, S., Patel, S., & Pant, K. K. (2007). Kinetic modeling of steam reforming of ethanol for the production of hydrogen over Co/Al2O3 catalyst. Chemical Engineering Journal, 125, 139–147. DOI: 10.1016/j.cej.2006.08.011.CrossRefGoogle Scholar
  82. Sánchez-Sánchez, M. C., Navarro, R. M., & Fierro, J. L. G. (2007). Ethanol steam reforming over Ni/MxOy-Al2O3 (M=Ce, La, Zr and Mg) catalysts: Influence of support on the hydrogen production. International Journal of Hydrogen Energy, 32, 1462–1471. DOI: 10.1016/j.ijhydene.2006.10.025.CrossRefGoogle Scholar
  83. Song, H., Zhang, L., Watson, R. B., Braden, D., & Ozkan, U. S. (2007). Investigation of bio-ethanol steam reforming over cobalt-based catalysts. Catalysis Today, 129, 346–354. DOI: 10.1016/j.cattod.2006.11.028.CrossRefGoogle Scholar
  84. Srisiriwat, N., Therdthianwong, S., & Therdthianwong, A. (2009). Oxidative steam reforming of ethanol over Ni/Al2O3 catalysts promoted by CeO2, ZrO2 and CeO2-ZrO2. International Journal of Hydrogen Energy, 34, 2224–2234. DOI: 10.1016/j.ijhydene.2008.12.058.CrossRefGoogle Scholar
  85. Sun, J., Qiu, X.-P., Wu, F., & Zhu, W.-T. (2005). H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application. International Journal of Hydrogen Energy, 30, 437–445. DOI: 10.1016/j.ijhydene.2004.11.005.CrossRefGoogle Scholar
  86. Sun, J., Qiu, X., Wu, F., Zhu, W., Wang, W., & Hao, S. (2004). Hydrogen from steam reforming of ethanol in low and middle temperature range for fuel cell application. International Journal of Hydrogen Energy, 29, 1075–1081. DOI: 10.1016/j.ijhydene.2003.11.004.CrossRefGoogle Scholar
  87. Sun, J., Wang, Y., Li, J., Xiao, G., Zhang, L., Li, H., Cheng, Y., Sun, C., Cheng, Z., Dong, Z., & Chen, L. (2010). H2 production from stable ethanol steam reforming over catalyst of NiO based on flowerlike CeO2 microspheres. International Journal of Hydrogen Energy, 35, 3087–3091. DOI: 10.1016/j.ijhydene.2009.07.020.CrossRefGoogle Scholar
  88. Vaidya, P. D., & Rodrigues, A. E. (2006). Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chemical Engineering Journal, 117, 39–49. DOI: 10.1016/j.cej.2005.12.008.CrossRefGoogle Scholar
  89. Vargas, J. C., Libs, S., Roger, A.-C., & Kiennemann, A. (2005). Study of Ce-Zr-Co fluorite-type oxide as catalysts for hydrogen production by steam reforming of bioethanol. Catalysis Today, 107–108, 417–425. DOI: 10.1016/j.cattod.2005.07. 118.CrossRefGoogle Scholar
  90. Vasudeva, K., Mitra, N., Umasankar, P., & Dhingra, S. C. (1996). Steam reforming of ethanol for hydrogen production: Thermodynamic analysis. International Journal of Hydrogen Energy, 21, 13–18. DOI: 10.1016/0360-3199(95)00030-H.CrossRefGoogle Scholar
  91. Velu, S., Suzuki, K., Vijayaraj, M., Barman, S., & Gopinath, C. S. (2005). In situ XPS investigations of Cu1−xNixZnAlmixed metal oxide catalysts used in the oxidative steam reforming of bio-ethanol. Applied Catalysis B: Environmental, 55, 287–299. DOI: 10.1016/j.apcatb.2004.09.007.CrossRefGoogle Scholar
  92. Vizcaíno, A. J., Arena, P., Baronetti, G., Carrero, A., Calles, J. A., Laborde, M. A., & Amadeo, N. (2008). Ethanol steam reforming on Ni/Al2O3 catalysts: Effect of Mg addition. International Journal of Hydrogen Energy, 33, 3489–3492. DOI: 10.1016/j.ijhydene.2007.12.012.CrossRefGoogle Scholar
  93. Wyman, C. (1996). Handbook on bioethanol: Production and utilization. Washington, DC, USA: Taylor & Francis.Google Scholar
  94. Yang, Y., Ma, J., & Wu, F. (2006). Production of hydrogen by steam reforming of ethanol over a Ni/ZnO catalyst. International Journal of Hydrogen Energy, 31, 877–882. DOI: 10.1016/j.ijhydene.2005.06.029.CrossRefGoogle Scholar
  95. Youn, M. H., Seo, J. G., Cho, K. M., Park, S., Park, D. R., Jung, J. C., & Song, I. K. (2008a). Hydrogen production by autothermal reforming of ethanol over nickel catalysts supported on Ce-modified mesoporous zirconia: Effect of Ce/Zr molar ratio. International Journal of Hydrogen Energy, 33, 5052–5059. DOI: 10.1016/j.ijhydene.2008.07.084.CrossRefGoogle Scholar
  96. Youn, M. H., Seo, J. G., Park, S., Jung, J. C., Park, D. R., & Song, I. K. (2008b). Hydrogen production by autothermal reforming of ethanol over Ni catalysts supported on ZrO2: Effect of preparation method of ZrO2 support. International Journal of Hydrogen Energy, 33, 7457–7463. DOI: 10.1016/j.ijhydene.2008.10.017.CrossRefGoogle Scholar
  97. Zhang, B., Tang, X., Li, Y., Cai, W., Xu, Y., & Shen, W. (2006). Steam reforming of bio-ethanol for the production of hydrogen over ceria-supported Co, Ir and Ni catalysts. Catalysis Communications, 7, 367–372. DOI: 10.1016/j.catcom.2005.12.014.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2011

Authors and Affiliations

  • Ahmed Bshish
    • 1
  • Zahira Yaakob
    • 1
  • Binitha Narayanan
    • 1
    • 2
    Email author
  • Resmi Ramakrishnan
    • 2
  • Ali Ebshish
    • 1
  1. 1.Department of Chemical and Process Engineering, Faculty of EngineeringNational University of Malaysia UKMBangiMalaysia
  2. 2.Department of ChemistrySree Neelakanta Government Sanskrit CollegePattambiIndia

Personalised recommendations