Skip to main content
Log in

Synthesis, characterisation, and biological activity of three new amide prodrugs of lamotrigine with reduced hepatotoxicity

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Lamotrigine (LTG) is an antiepileptic drug used for the prevention of convulsions. Except several known side effects, hepatic dysfunction is also reported. Hepatotoxic side effects occur due to the dichlorophenyl moiety which develops an abnormally low level of glutathione. Depletion of glutathione causes oxidative stress and hepatic cell damage. The goal of the present study was to test the action and side effects of the three compounds synthesised and compared to LTG. Three amide prodrugs of LTG were synthesised by its reaction with N-acetylamino acids, viz, glycine, glutamic acid, and methionine. Purified synthesised prodrugs were subjected to thin layer chromatography, melting point, solubility and partition coefficients determination and characterised by UV, FTIR, 1H and 13C NMR spectroscopy. The synthesised prodrugs were subjected to in vitro hydrolysis and to anticonvulsant and hepatotoxic activity studies. Significant reduction in hepatotoxicity and comparable anticonvulsant activities were obtained in all synthesised prodrugs as compared to LTG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Attwell, P. J. E., Singh Kent, N., Jane, D. E., Croucher, M. J., & Bradford, H. F. (1998). Anticonvulsant and glutamate release-inhibiting properties of the highly potent metabotropic glutamate receptor agonist (2S,2′R,3′R)-2-(2′,3′-dicarboxycyclopropyl)glycine (DCG-IV). Brain Research, 805, 138–143. DOI: 10.1016/S0006-8993(98)00698-2.

    Article  CAS  Google Scholar 

  • Barbosa, N. R., & Mídio, A. F. (2000). Validated highperformance liquid chromatographic method for the determination of lamotrigine in human plasma. Journal of Chromatography B, 741, 289–293. DOI: 10.1016/S0378-4347(00)00102-X.

    Article  CAS  Google Scholar 

  • Dakin, H. D. (1929). The condensation of aromatic aldehydes with glycine and acetylglycine. The Journal of Biological Chemistry, LXXXII, 439–446.

    Google Scholar 

  • du Vigneaud, V., Kilmer, G. W., Rachele, J. R., & Cohn, M. (1944). On the mechanism of the conversion in vivo of methionine to cystine. The Journal of Biological Chemistry, 155, 645–651.

    Google Scholar 

  • Fayad, M., Choueiri, R., & Mikati, M. (2000). Potential hepatotoxicity of lamotrigine. Pediatric Neurology, 22, 49–52. DOI: 10.1016/S0887-8994(99)00106-X.

    Article  CAS  Google Scholar 

  • GraphPad Software, Inc. (2009). GraphPad Prism, Version 5.0 for Windows. La Jolla, CA, USA: GraphPad Software, Inc.

    Google Scholar 

  • Maggs, J. L., Naisbitt, D. J., Tettey, J. N. A., Pirmohamed, M., & Park, B. K. (2000). Metabolism of lamotrigine to a reactive arene oxide intermediate. Chemical Research in Toxicology, 13, 1075–1081. DOI: 10.1021/tx0000825.

    Article  CAS  Google Scholar 

  • Makin, A. J., Fitt, S., & Williams, R. (1995). Fulminant hepatic failure induced by lamotrigine. British Medical Journal, 311, 292.

    CAS  Google Scholar 

  • May, T. W., Rambeck, B., & Jürgens, U. (1996). Serum concentrations of lamotrigine in epileptic patients: the influence of dose and comedication. Therapeutic Drug Monitoring, 18, 523–531. DOI: 10.1097/00007691-199610000-00001.

    Article  CAS  Google Scholar 

  • Meshkibaf, M. H., Ebrahimi, A., Ghodsi, R., & Ahmadi, A. (2006). Chronic effects of lamotrigine on liver function in adult male rats. Indian Journal of Clinical Biochemistry, 21, 161–164. DOI: 10.1007/BF02913087.

    Article  CAS  Google Scholar 

  • Moeller, K. E., Wei, L., Jewell, A. D., & Carver, L. A. (2008). Acute hepatotoxicity associated with lamotrigine. The American Journal of Psychiatry, 165, 539–540. DOI: 10.1176/appi.ajp.2007.07050728.

    Article  Google Scholar 

  • Nam, N.-H., Kim, Y., You, Y.-J., Hong, D.-H., Kim, H.-M., & Ahn, B.-Z. (2003). Water soluble prodrugs of the antitumor agent 3-[(3-amino-4-methoxy)phenyl]-2-(3,4,5-trimethoxyphenyl)cyclopent-2-ene-1-one. Bioorganic & Medicinal Chemistry, 11, 1021–1029. DOI: 10.1016/S0968-0896(02)00514-X.

    Article  CAS  Google Scholar 

  • Nedelcheva, V. Gut, I., Souček, P., & Frantík, E. (1998). Cytochrome P450 catalyzed oxidation of monochlorobenzene, 1,2- and 1,4-dichlorobenzene in rat, mouse, and human liver microsomes. Chemico-Biological Interactions, 115, 53–70. DOI: 10.1016/S0009-2797(98)00058-1.

    Article  CAS  Google Scholar 

  • Overstreet, K., Costanza, C., Behling, C., Hassanin, T., & Masliah, E. (2002). Fatal progressive hepatic necrosis associated with lamotrigine treatment: A case report and literature review. Digestive Diseases and Sciences, 47, 1921–1925. DOI: 10.1023/A:1019627618972.

    Article  Google Scholar 

  • Pugazhendhy, S., Shrivastava, P. K., Sinha, S. K., & Shrivastava, S. K. (2010). Lamotrigine-dextran conjugatessynthesis, characterization, and biological evaluation. Medicinal Chemistry Research, Online First, 24 May 2010. DOI: 10.1007/s00044-010-9355-9.

  • San-Miguel, B., Alvarez, M., Culebras, J. M., González-Gallego, J., & Tuñón, M. J. (2006). N-acetyl-cysteine protects liver from apoptotic death in an animal model of fulminant hepatic failure. Apoptosis, 11, 1945–1957. DOI: 10.1007/s10495-006-0090-0.

    Article  CAS  Google Scholar 

  • Santos, N. A. G., Medina, W. S. G., Martins, N. M., Carvalho Rodrigues, M. A., Curti, C., & Santos, A. C. (2008). Involvement of oxidative stress in the hepatotoxicity induced by aromatic antiepileptic drugs. Toxicology in Vitro, 22, 1820–1824. DOI: 10.1016/j.tiv.2008.08.004.

    Article  CAS  Google Scholar 

  • Sauvé, G., Bresson-Hadni, S., Prost, P., Le Calvez, S., Becker, M.-C., Galmiche, J., Carbillet, J.-P., & Miguet, J.-P. (2000). Acute hepatitis after lamotrigine administration. Digestive Diseases and Sciences, 45, 1874–1877. DOI: 10.1023/A:1005593119425.

    Article  Google Scholar 

  • Serwetman, L. R. C., Krikorian, S. A., & Javedan, H. (2008). Rash and liver dysfunction related to lamotrigine therapy. The Journal of Pharmacy Technology, 24, 17–21.

    CAS  Google Scholar 

  • Shorvon, S., & Stefan, H. (1997). Overview of the safety of newer antiepileptic drugs. Epilepsia, 38, S45–S51. DOI: 10.1111/j.1528-1157.1997.tb04519.x.

    Article  CAS  Google Scholar 

  • Siritantikorn, A., Johansson, K., Åhlen, K., Rinaldi, R., Suthiphongchai, T., Wilairat, P., & Morgenstern, R. (2007). Protection of cells from oxidative stress by microsomal glutathione transferase 1. Biochemical and Biophysical Research Communications, 355, 592–596. DOI: 10.1016/j.bbrc.2007.02.018.

    Article  CAS  Google Scholar 

  • Tanaka, K., & Kawasaki, Y. (1957). A group of compounds possessing anticonvulsant activity In the maximal electroshock seizure test. The Japanese Journal of Pharmacology, 6, 115–121. DOI: 10.1254/jjp.6.115.

    Article  CAS  Google Scholar 

  • Younis, H. S., Hoglen, N. C., Kuester, R. K., Gunawardhana, L., & Sipes, I. G. (2000). 1,2-Dichlorobenzene-mediated hepatocellular oxidative stress in Fischer-344 and Sprague-Dawley rats. Toxicology and Applied Pharmacology, 163, 141–148. DOI: 10.1006/taap.1999.8860.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushant K. Shrivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, S.K., Shrivastava, P.K. & Shrivastava, S.K. Synthesis, characterisation, and biological activity of three new amide prodrugs of lamotrigine with reduced hepatotoxicity. Chem. Pap. 65, 70–76 (2011). https://doi.org/10.2478/s11696-010-0094-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-010-0094-7

Keywords

Navigation