Skip to main content
Log in

Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The synthesis of methyl acetoacetate (MAA) by methoxycarbonylation of acetone with dimethyl carbonate (DMC) was carried out in the presence of MgO and alkali-promoted MgO catalysts. From among Li, Na, K, and Cs, potassium was found to be the most effective promoter to improve the activity of MgO. The effect of K/MgO with variable content of K was also investigated, and the individual catalysts were characterised by the XRD, BET, SEM, CO2-TPD, and in situ CO2 IR techniques. The results showed that the addition of a small amount of K (1.97 mass %) could promote MAA formation, but a higher K loading caused a decrease in the yield of MAA, which might result from particle agglomeration and the presence of stable potassium carbonates. In situ FTIR experiments of co-adsorbed reactants indicated that the reaction probably proceeded via abstraction of Hα from acetone by base sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beutel, T. (1998). Spectroscopic and kinetic study of the alkylation of phenol with dimethyl carbonate over NaX zeolite. Journal of the Chemical Society, Faraday Transactions, 94, 985–993. DOI: 10.1039/a706356c.

    Article  CAS  Google Scholar 

  • Díez, V. K., Apesteguía, C. R., & Di Cosimo, J. I. (2006). Aldol condensation of citral with acetone on MgO and alkali-promoted MgO catalysts. Journal of Catalysis, 240, 235–244. DOI: 10.1016/j.jcat.2006.04.003.

    Article  Google Scholar 

  • Díez, V. K., Apesteguía, C. R., & Di Cosimo, J. I. (2000). Acid-base properties and active site requirements for elimination reactions on alkali-promoted MgO catalysts. Catalysis Today, 63, 53–62. DOI: 10.1016/S0920-5861(00)00445-4.

    Article  Google Scholar 

  • Di Cosimo, J. I., Díez, V. K., & Apesteguía, C. R. (1996). Base catalysis for the synthesis of α,β-unsaturated ketones from the vapor-phase aldol condensation of acetone. Applied Catalysis A: General, 137, 149–166. DOI: 10.1016/0926-860X(95)00289-8.

    Article  Google Scholar 

  • Fischer, R. (1995). Preparation of α,ω-dicarboxylic acid diesters. U.S. Patent No. 5453535. Washington, D.C., USA: U.S. Patent and Trademark Office.

    Google Scholar 

  • Fu, Y., Baba, T., & Ono, Y. (1998). Vapor-phase reactions of catechol with dimethyl carbonate. Part I. O-Methylation of catechol over alumina. Applied Catalysis A: General, 166, 419–424. DOI: 10.1016/S0926-860X(97)00287-1.

    Article  CAS  Google Scholar 

  • Fuming, M., Zhi, P., & Guangxing, L. (2004). The transesterification of dimethyl carbonate with phenol over Mg-Al-hydrotalcite catalyst. Organic Process Research & Development, 8, 372–375. DOI: 10.1021/op0302098.

    Article  Google Scholar 

  • Jyothi, T. M., Raja, T., Talawar, M. B., & Rao, B. S. (2001). Selective O-methylation of catechol using dimethyl carbonate over calcined Mg-Al hydrotalcites. Applied Catalysis A: General, 211, 41–46. DOI: 10.1016/S0926-860X(00)00839-5.

    Article  CAS  Google Scholar 

  • Kanno, T., & Kobayashi, M. (1994) Evaluation of basicity of alkali metal-doped MgO in the scope of change of carbonate species. In H. Hattori, M. Misono, & Y. Ono (Eds.), Acid-base catalysis II: Proceedings of the international symposium on acid-base catalysis II, Sapporo, December 2–4, 1993 (pp. 207–216). Tokyo, Japan: Kodansha.

    Chapter  Google Scholar 

  • Koehler, G., & Metz, J. (1998). Process for preparing diesters of higher α,ω-dicarboxylic acids. U.S. Patent No. 5786502. Washington, D.C., USA: U.S. Patent and Trademark Office.

    Google Scholar 

  • Köhler, G. (1995). Process for the preparation of pimelic esters. U.S. Patent No. 5436365. Washington, D.C., USA: U.S. Patent and Trademark Office.

    Google Scholar 

  • Lapidus, A. L., Eliseev, O. L., Bondarenko, T. N., Sizan, O. E., & Ostapenko, A. G. (2001). Carbonylation of chloroacetone to methyl acetoacetate. Russian Chemical Bulletin, 50, 2239–2241. DOI: 10.1023/A:1015042510988.

    Article  CAS  Google Scholar 

  • Lide, D. R. (1990). Handbook of chemistry and physics (71st ed.). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Marques, C. A., Selva, M., Tundo, P., & Montanari, F. (1993). Reaction of oximes with dimethyl carbonate: a new entry to 3-methyl-4,5-disubstituted-4-oxazolin-2-ones. Journal of Organic Chemistry, 58, 5765–5770. DOI: 10.1021/jo00073a041.

    Article  CAS  Google Scholar 

  • Pohl, F. J., & Schmidt, W. (1944). Process of preparing acetoacetic esters. U.S. Patent No. 2351366. Washington, D.C., USA: U.S. Patent and Trademark Office.

    Google Scholar 

  • Ruest, L., Blouin, G., & Deslongchamps, P. A. (1976). Convenient synthesis of 2-carbomethoxycyclohexanone. Synthetic Communications, 6, 169–174. DOI: 10.1080/00397917608072627.

    Article  CAS  Google Scholar 

  • Selva, M., Marques, C. A., & Tundo, P. (1993). The addition reaction of dialkyl carbonates to ketones. Gazzetta Chimica Italiana, 123, 515–518.

    CAS  Google Scholar 

  • Shieh, W.-C., Dell, S., Bach, A., Repi., O., & Blacklock, T. J. (2003). Dual nucleophilic catalysis with DABCO for the N-methylation of indoles. Journal of Organic Chemistry, 68, 1954–1957. DOI: 10.1021/jo0266644.

    Article  CAS  Google Scholar 

  • Shivarkar, A. B., Gupte, S. P., & Chaudhari, R. V. (2005). Selective synthesis of N,N-dimethyl aniline derivatives using dimethyl carbonate as a methylating agent and onium salt as a catalyst. Journal of Molecular Catalysis A: Chemical, 226, 49–56. DOI: 10.1016/j.molcata.2004.09.025.

    Article  CAS  Google Scholar 

  • Tundo, P., Moraglio, G., & Trotta, F. (1989). Gas-liquid phase-transfer catalysis: a new continuous-flow method in organic synthesis. Industrial & Engineering Chemistry Research, 28, 881–890. DOI: 10.1021/ie00091a001.

    Article  CAS  Google Scholar 

  • Tundo, P., & Selva, M. (2002). The chemistry of dimethyl carbonate. Accounts of Chemical Research, 35, 706–716. DOI: 10.1021/ar010076f.

    Article  CAS  Google Scholar 

  • Tundo, P., Trotta, F., Moraglio, G., & Ligorati, F. (1988). Continuous-flow processes under gas.liquid phase-transfer catalysis (GL-PTC) conditions: the reaction of dialkyl carbonates with phenols, alcohols, and mercaptans. Industrial & Engineering Chemistry Research, 27, 1565–1571. DOI: 10.1021/ie00081a002.

    Article  CAS  Google Scholar 

  • Vauthey, I., Valot, F., Gozzi, C., Fache, F., & Lemaire, M. (2000). An environmentally benign access to carbamates and ureas. Tetrahedron Letters, 41, 6347–6350. DOI: 10.1016/S0040-4039(00)01051-0.

    Article  CAS  Google Scholar 

  • Wu, D., Fu, X., Li, J., Zhao, N., Wei, W., & Sun, Y. (2008). A novel route for the synthesis of methyl acetoacetate from dimethyl carbonate and acetone over solid base. Catalysis Today, 131, 372–377. DOI: 10.1016/j.cattod.2007.10.047.

    Article  CAS  Google Scholar 

  • Yadav, G. D., & Lathi, P. S. (2004). Synergism between microwave and enzyme catalysis in intensification of reactions and selectivities: transesterification of methyl acetoacetate with alcohols. Journal of Molecular Catalalysis A: Chemical, 223, 51–56. DOI: 10.1016/j.molcata.2003.09.050.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dudu Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, D., Chen, Z. Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts. Chem. Pap. 64, 758–766 (2010). https://doi.org/10.2478/s11696-010-0068-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-010-0068-9

Keywords

Navigation