Skip to main content
Log in

The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This work presents the use of sulfated tin oxide enhanced with SiO2 (SO 2−4 /SnO2-SiO2) as a superacid solid catalyst to produce methyl esters from Jatropha curcas oil. The study was conducted using the design of experiment (DoE), specifically a response surface methodology based on a threevariable central composite design (CCD) with α = 2. The reaction parameters in the parametric study were: reaction temperature (60°C to 180°C), reaction period (1 h to 3 h), and methanol to oil mole ratio (1: 6 to 1: 24). Production of the esters was conducted using an autoclave nitrogen pressurized reactor equipped with a thermocouple and a magnetic stirrer. The maximum methyl esters yield of 97 mass % was obtained at the reaction conditions: temperature of 180°C, reaction period of 2 h, and methanol to oil mole ratio of 1: 15. The catalyst amount and agitation speed were fixed to 3 mass % and 350–360 min−1, respectively. Properties of the methyl esters obtained fell within the recommended biodiesel standards such as ASTM D6751 (ASTM, 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albuquerque, M. C. G., Jiménez-Urbistondo, I., Santamaría-González, J., Mérida-Robles, J. M., Moreno-Tost, R., Rodríguez-Castellón, E., Jiménez-López, A., Azevedo, D. C. S., Cavalcante, C. L., Jr., & Maireles-Torres, P. (2008). CaO supported on mesoporous silicas as basic catalysts for transesterification reactions. Applied Catalysis A: General, 334, 35–43. DOI: 10.1016/j.apcata.2007.09.028.

    Article  CAS  Google Scholar 

  • Arzamendi, G., Campo, I., Arguiñnarena, E., Sánchez, M., Montes, M., & Gandía, L. M. (2007). Synthesis of biodiesel with heterogeneous NaOH/alumina catalysts: Comparison with homogeneous NaOH. Chemical Engineering Journal, 134, 123–130. DOI: 10.1016/j.cej.2007.03.049.

    Article  CAS  Google Scholar 

  • American Society for Testing and Materials, ASTM International (2003). American and European biodiesel quality standards: Standard specification for biodiesel fuel (B100) blend stock for distillate fuels. ASTM D6751. West Conshohocken, PA, USA.

    Google Scholar 

  • Berchmans, H. J., & Hirata, S. (2008). Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresource Technology, 99, 1716–1721. DOI: 10.1016/j.biortech.2007.03.051.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2008a). Biodiesel: a realistic fuel alternative for diesel engines. London, UK: Springer Verlag.

    Google Scholar 

  • Demirbas, A. (2008b). Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Conversion and Management, 49, 2106–2116. DOI: 10.1016/j.enconman.2008.02.020.

    Article  CAS  Google Scholar 

  • Georgogianni, K. G., Katsoulidis, A. P., Pomonis, P. J., & Kontominas, M. G. (2009). Transesterification of soybean frying oil to biodiesel using heterogeneous catalysts. Fuel Processing Technology, 90, 671–676. DOI: 10.1016/j.fuproc.2008.12.004.

    Article  CAS  Google Scholar 

  • Guan, G., Kusakabe, K., & Yamasaki, S. (2009). Tri-potassium phosphate as a solid catalyst for biodiesel production from waste cooking oil. Fuel Processing Technology, 90, 520–524. DOI: 10.1016/j.fuproc.2009.01.008.

    Article  CAS  Google Scholar 

  • Gui, M. M., Lee, K. T., & Bhatia, S. (2008). Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy, 33, 1646–1653. DOI: 10.1016/j.energy.2008.06.002.

    Article  CAS  Google Scholar 

  • Kafuku, G., Lujaji, F., & Mbarawa, M. M. (2009). Effect of kerosene blending on methyl esters of croton, jatropha and moringa fatty acids. In 9th International Conference on Heat Engines and Environmental Protection, 25–27 May 2009 (pp. 211–216). Balatonfüred, Hungary: Budapest University of Technology and Economics.

    Google Scholar 

  • Kansedo, J., Lee, K. T., & Bhatia, S. (2009). Biodiesel production from palm oil via heterogeneous transesterification. Biomass and Bioenergy, 33, 271–276. DOI: 10.1016/j.biombioe.2008.05.011.

    Article  CAS  Google Scholar 

  • Kouzu, M., Kasuno, T., Tajika, M., Sugimoto, Y., Yamanaka, S., & Hidaka, J. (2008). Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel, 87, 2798–2806. DOI: 10.1016/j.fuel.2007.10.019.

    Article  CAS  Google Scholar 

  • Kulkarni, M. G., & Dalai, A. K. (2006). Waste cooking oil-an economical source for biodiesel: A review. Industrial & Engineering Chemistry Research, 45, 2901–2913. DOI: 10.1021/ie0510526.

    Article  CAS  Google Scholar 

  • Kumar Tiwari, A., Kumar, A., & Raheman, H. (2007). Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process. Biomass and Bioenergy, 31, 569–575. DOI: 10.1016/j.biombioe.2007.03.003.

    Article  CAS  Google Scholar 

  • Lam, M. K., Lee, K. T., & Mohamed, A. R. (2009). Sulfated tin oxide as solid superacid catalyst for transesterification of waste cooking oil: An optimization study. Applied Catalysis B: Environmental, 93, 134–139. DOI: 10.1016/j.apcatb.2009.09.022.

    Article  CAS  Google Scholar 

  • Lin, L., Ying, D., Chaitep, S.,& Vittayapadung, S. (2009). Biodiesel production from crude rice bran oil and properties as fuel. Applied Energy, 86, 681–688. DOI: 10.1016/j.apenergy.2008.06.002.

    Article  CAS  Google Scholar 

  • Lu, H., Liu, Y., Zhou, H., Yang, Y., Chen, M., & Liang, B. (2009). Production of biodiesel from Jatropha curcas L. oil. Computers & Chemical Engineering, 33, 1091–1096. DOI: 10.1016/j.compchemeng.2008.09.012.

    Article  CAS  Google Scholar 

  • Meng, X., Chen, G., & Wang, Y. (2008). Biodiesel production from waste cooking oil via an alkali catalyst and its engine test. Fuel Processing Technology, 89, 851–857. DOI: 10.1016/j.fuproc.2008.02.006.

    Article  CAS  Google Scholar 

  • Predojević, Z. J. (2008). The production of biodiesel from waste frying oils: A comparison of different purification steps. Fuel, 87, 3522–3528. DOI: 10.1016/j.fuel.2008.07.003.

    Article  Google Scholar 

  • Rashid, U., & Anwar, F. (2008). Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil. Fuel, 87, 265–273. DOI: 10.1016/j.fuel.2007.05.003.

    Article  CAS  Google Scholar 

  • Sahoo, P. K., & Das, L. M. (2009). Process optimization for biodiesel production from Jatropha, Kkaranja and Polanga oils. Fuel, 88, 1588–1594. DOI: 10.1016/j.fuel.2009.02.016.

    Article  CAS  Google Scholar 

  • Vyas, A. P., Subrahmanyam, N., & Patel, P. A. (2009). Production of biodiesel through transesterification of Jatropha oil using KNO3/Al2O3 solid catalyst. Fuel, 88, 625–628. DOI: 10.1016/j.fuel.2008.10.033.

    Article  CAS  Google Scholar 

  • Zabeti, M., Daud, W. M. A. W., & Aroua, M. K. (2009). Optimization of the activity of CaO/Al2O3 catalyst for biodiesel production using response surface methodology. Applied Catalysis A: General, 366, 154–159. DOI: 10.1016/j.apcata.2009.06.047.

    Article  CAS  Google Scholar 

  • Zhang, Y., Dubé, M. A., McLean, D. D., & Kates, M. (2003). Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresource Technology, 90, 229–240. DOI: 10.1016/S0960-8524(03)00150-0.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makame Mbarawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kafuku, G., Lee, K.T. & Mbarawa, M. The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil. Chem. Pap. 64, 734–740 (2010). https://doi.org/10.2478/s11696-010-0063-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-010-0063-1

Keywords

Navigation