Skip to main content

Advertisement

Log in

Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Influence of electrode morphology on electrochemical properties of lead dioxide electrodes (β-PbO2) for oxygen-ozone evolution reactions in acid medium was investigated using scanning electronic microscopy (SEM), cyclic voltammetry (CV), polarization curves (PC), and determination of the current efficiency (Φ). Experimental findings revealed that application of high electrodeposition current densities furnishes more rough β-PbO2 films. Surface characteristics were verified by SEM images and the analysis of interfacial pseudo-capacitances and morphology factor (φ). Kinetic study of the overall electrode process (O2 + O3) based on the analysis of the Tafel slope revealed that the electrode morphology and electrolyte composition considerably affect the electrode kinetics. In most cases, the existence of two Tafel slopes distributed in the low and high overpotential domains was observed. Abnormal Tafel slopes (b ≠ 120 mV) obtained for the primary water discharge step during water electrolysis were interpreted considering the apparent charge transfer coefficient (α apa). Optimum conditions for the ozone production were obtained for the less rough β-PbO2 electrode immersed in a sulfuric acid solution (1.0 mol dm−3) containing KPF6 (30 × 10−3 mol dm−3), where the current efficiency of 15 mass % for the ozone production was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arihara, K., Terashima, C., & Fujishima, A. (2007). Electrochemical production of high-concentration ozone-water using freestanding perforated diamond electrodes. Journal of The Electrochemical Society, 154, E71–E75. DOI: 10.1149/1.2509385.

    Article  CAS  Google Scholar 

  • Awad, M. I., Sata, S., Kaneda, K., Ikematsu, M., Okajima, T., & Ohsaka, T. (2006). Ozone electrogeneration at a high current efficiency using a tantalum oxide-platinum composite electrode. Electrochemistry Communications, 8, 1263–1269. DOI: 10.1016/j.elecom.2006.06.008.

    Article  CAS  Google Scholar 

  • Babak, A. A., Amadelli, R., De Battisti, A., & Fateev, V. N. (1994). Influence of anions on oxygen/ozone evolution on PbO2/spe and PbO2/Ti electrodes in neutral pH media. Electrochimica Acta, 39, 1597–1602. DOI: 10.1016/0013-4686(94)85141-7.

    Article  CAS  Google Scholar 

  • Bockris, J. O’M., Reddy, A., & Gamboa-Aldeco, M. (2000). Modern electrochemistry (2nd ed., Vol. 2). New York, NY, USA: Plenum Publishers.

    Google Scholar 

  • Brenet, J., & Traore, K. (1971). Transfer coefficients in electrochemical kinetics. London, UK: Academic Press.

    Google Scholar 

  • Conway, B. E., MacKinnon, D. J., & Tilak, B. V. (1970). Significance of electrochemical Brøsted factors. Kinetic studies over a wide range of temperatures. Transactions of the Faraday Society, 66, 1203–1226. DOI: 10.1039/TF9706601203.

    Article  CAS  Google Scholar 

  • Da Silva, L. M., Boodts, J. F. C., & De Faria, L. A. (2001a). Oxygen evolution at RuO2(x) + Co3O4(1−x) electrodes from acid solution. Electrochimica Acta, 46, 1369–1375. DOI: 10.1016/S0013-4686(00)00716-7.

    Article  Google Scholar 

  • Da Silva, L. M., De Faria, L. A., & Boodts, J. F. C. (2001b). Determination of the morphology factor of oxide layers. Electrochimica Acta, 47, 395–403. DOI: 10.1016/S0013-4686(01)00738-1.

    Article  Google Scholar 

  • Da Silva, L. M., De Faria, L. A., & Boodts, J. F. C. (2001c). Green processes for environmental application. Electrochemical ozone production. Pure and Applied Chemistry, 73, 1871–1884. DOI: 10.1351/pac200173121871.

    Article  Google Scholar 

  • Da Silva, L. M., De Faria, L. A., & Boodts, J. F. C. (2003). Electrochemical ozone production: influence of the supporting electrolyte on kinetics and current efficiency. Electrochimica Acta, 48, 699–709. DOI: 10.1016/S0013-4686(02)00739-9.

    Article  Google Scholar 

  • Da Silva, L. M., Franco, D. V., De Faria, L. A., & Boodts, J. F. C. (2004). Surface, kinetics and electrocatalytic properties of Ti/(IrO2 + Ta2O5) electrodes, prepared using controlled cooling rate, for ozone production. Electrochimica Acta, 49, 3977–3988. DOI: 10.1016/j.electacta.2003.11.039.

    Article  Google Scholar 

  • Da Silva, L. M., Franco, D. V., Gonçalves, I. C., & Sousa, L. G. (2009). Advanced technologies based on ozonation for water treatment. In N. Gertsen & L. Sønderby (Eds.), Water purification (pp. 1–53). New York, NY, USA: Nova Science Publishers.

    Google Scholar 

  • Da Silva, L. M., Franco, D. V., Sousa, L. G., & Gonçalves, I. C. (2010). Characterization of an electrochemical reactor for the ozone production in electrolyte-free water. Journal of Applied Electrochemistry, 40, 855–864. DOI: 10.1007/s10800-009-0069-y.

    Article  Google Scholar 

  • Feng, J., & Johnson, D. C. (1991). Electrocatalysis of anodic oxygen-transfer reactions: Titanium substrates for pure and doped lead dioxide films. Journal of The Electrochemical Society, 138, 3328–3337. DOI: 10.1149/1.2085410.

    Article  CAS  Google Scholar 

  • Filoche, M., & Sapoval, B. (2000). Shape-dependency of current through non-linear irregular electrodes. Electrochimica Acta, 46, 213–220. DOI: 10.1016/S0013-4686(00)00575-2.

    Article  CAS  Google Scholar 

  • Foller, P. C. (1982). Status of research on ozone generation by electrolysis. In R. G. Rice & A. N. Netzer (Eds.), Handbook of ozone technology and applications (Vol. 1, pp. 85–104). Ann Arbor, MI: Ann Arbor Science.

    Google Scholar 

  • Foller, P. C. & Kelsall, G. H. (1993). Ozone generation via the electrolysis of fluoboric acid using glassy carbon anodes and air depolarized cathodes. Journal of Applied Electrochemistry, 23, 996–1010. DOI: 10.1007/BF00266121.

    Article  CAS  Google Scholar 

  • Foller, P. C., & Tobias, C. W. (1982). The anodic evolution of ozone. Journal of The Electrochemical Society, 129, 506–515. DOI: 10.1149/1.2123890.

    Article  CAS  Google Scholar 

  • Franco, D. V., Da Silva, L. M., Jardim, W. F., & Boodts, J. F. C. (2006). Influence of the electrolyte composition on the kinetics of the oxygen evolution reaction and ozone production processes. Journal of the Brazilian Chemical Society, 17, 746–757. DOI: 10.1590/S0103-50532006000400017.

    Article  CAS  Google Scholar 

  • Kitsuka, K., Kaneda, K., Ikematsu, M., Iseki, M., Mushiake, K., & Ohsaka, T. (2010). n-Type TiO2 thin films for electrochemical ozone production. Journal of The Electrochemical Society, 157, F30–F34. DOI: 10.1149/1.3265469.

    Article  CAS  Google Scholar 

  • Kötz, E. R., & Stucki, S. (1987). Ozone and oxygen evolution on PbO2 electrodes in acid solution. Journal of Electroanalytical Chemistry, 228, 407–415. DOI: 10.1016/0022-0728(87)80120-1.

    Article  Google Scholar 

  • Lefebvre, M. C. (2002). Establishing the link between multistep electrochemical reaction mechanisms and experimental Tafel slopes. In B. E. Conway, J. O’M. Bockris, & R. E. White (Eds.), Modern aspects of electrochemistry (Vol. 32). New York, NY, USA: Kluwer.

    Google Scholar 

  • Malpass, G. R. P., Neves, R. S., & Motheo, A. J. (2006). A comparative study of commercial and laboratory-made Ti/Ru0.3Ti0.7O2 DSA® electrodes: “In situ” and “ex situ” surface characterisation and organic oxidation activity. Electrochimica Acta, 52, 936–944. DOI: 10.1016/j.electacta.2006.06.032.

    Article  CAS  Google Scholar 

  • Merrill, M. D., & Dougherty, R. C. (2008). Metal oxide catalysts for the evolution of O2 from H2O. Journal of Physical Chemistry C, 112, 3655–3666. DOI: 10.1021/jp710675m.

    Article  CAS  Google Scholar 

  • Pavlov, D., Kirchev, A., Stoycheva, M., & Monahov, B. (2004). Influence of H2SO4 concentration on the mechanism of the processes and on the electrochemical activity of the Pb/PbO2/PbSO4 electrode. Journal of Power Sources, 137, 288–308. DOI: 10.1016/j.jpowsour.2004.06.006.

    Article  CAS  Google Scholar 

  • Pohl, J. P., & Ricket, H. (1981). Electrochemistry of lead dioxide. In S. Trasatti (Ed.), Electrodes of conductive metallic oxides (Part A, pp. 183–220). Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Pourbaix, M. (1974). Atlas of electrochemical equilibria in aqueous solutions (p. 541). Houston, TX, USA: National Association of Corrosion Engineers.

    Google Scholar 

  • Rüetschi, P. (1959). Overvoltage and catalysis. Journal of The Electrochemical Society, 106, 819–827. DOI: 10.1149/1.2427504.

    Article  Google Scholar 

  • Shub, D. M., & Reznik, M. F. (1985). Method for the evaluation of the ohmic errors and the correction of polarization curves of metal-oxide anodes. Soviet Electrochemistry, 21, 795–800.

    Google Scholar 

  • Swamy, B. E. K., Maye, J., Vannoy, C., & Schell, M. (2004). Improvements in the efficiency of the oxidation of formic acid obtained by increasing the overall anion adsorption strength. Journal of Physical Chemistry B, 108, 16488–16494. DOI: 10.1021/jp048472d.

    Article  CAS  Google Scholar 

  • Wabner, D., & Grambow, C. (1985). Reactive intermediates during oxidation of water on lead dioxide and platinum electrodes. Journal of Electroanalytical Chemistry, 195, 95–108. DOI: 10.1016/0022-0728(85)80008-5.

    Article  CAS  Google Scholar 

  • Wang, J., Li, X., Guo, L., & Luo, X. (2008). Effect of surface morphology of lead dioxide particles on their ozone generating performance. Applied Surface Science, 254, 6666–6670. DOI: 10.1016/j.apsusc.2008.04.052.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Élen C. G. Rufino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rufino, É.C.G., Santana, M.H.P., De Faria, L.A. et al. Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions. Chem. Pap. 64, 749–757 (2010). https://doi.org/10.2478/s11696-010-0062-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-010-0062-2

Keywords

Navigation