Skip to main content
Log in

Chemical conjugation of biomacromolecules: A mini-review

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Biological studies showed that assembles of biomolecules can dramatically change their physiological effectiveness. Covalent coupling of different types of biomolecules leads to novel biomacromolecules of different properties. Generally, bioconjugate chemistry opens a new dimension in biomedical and biotechnology research. In this review, some important chemical methods of bioconjugates preparation used in the practice are described. Proteins and saccharides modification methods and employment of linkers used to achieve new functionalities are discussed. Common bioconjugation methods are emphasized and novel methods from recent years are described. Except in chemistry, benefits and limits of the studied methods are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albericio, F. (2004). Developments in peptide and amide synthesis. Current Opinion in Chemical Biology, 8, 211–221. DOI: 10.1016/j.cbpa.2004.03.002.

    Article  CAS  Google Scholar 

  • Amir-Kroll, H., Nussbaum, G., & Cohen, I. R. (2003). Proteins and their derived peptides as carriers in a conjugate vaccine for Streptococcus pneumoniae: Self-heat shock protein 60 and tetanus toxoid. The Journal of Immunology, 170, 6165–6171.

    CAS  Google Scholar 

  • Anderson, P., Pichichero, M. E., & Insel, R. A. (1985). Immunogens consisting of oligosaccharides from the capsule of Haemophilus influenzae type b coupled to diphtheria toxoid or CRM197. The Journal of Clinical Investigation, 76, 52–59. DOI: 10.1172/JCI111976.

    Article  CAS  Google Scholar 

  • Baskin, J. M., Prescher, J. A., Laughlin, S. T., Agard, N. J., Chang, P. V., Miller, I, A., Lo, A., Codelli, J. A., & Bertozzi, C. R. (2007). Copper-free click chemistry for dynamic in vivo imaging. Proceedings of the National Academy of Sciences, 104, 16793–16797. DOI: 10.1073/pnas.0707090104.

    Article  Google Scholar 

  • Bauminger, S., & Wilcheck, M. (1980). The use of carbodiimides in the preparation of immunizing conjugates. Methods in Enzymology, 70, 151–159.

    Article  CAS  Google Scholar 

  • Berkin, A., Coxon, B., & Pozsgay, V. (2002). Towards a synthetic glycoconjugate vaccine against Neisseria meningitidis A. Chemistry — A European Journal, 8, 4424–4433. DOI: 10.1002/1521-3765(20021004)8:19<4424::AID-CHEM4424>3.0.CO;2-1.

    Article  CAS  Google Scholar 

  • Bernstein, M. A., & Hall, L. D. (1980). A general synthesis of model glycoproteins: coupling of alkenyl glycosides to proteins, using reductive ozonolysis followed by reductive amination with sodium cyanoborohydride. Carbohydrate Research, 78, C1–C3. DOI: 10.1016/S0008-6215(00)83676-9.

    Article  CAS  Google Scholar 

  • Bode, J. W., Fox, R. M., & Baucom, K. D. (2006). Chemoselective amide ligations by decarboxylative condensations of N-alkylhydroxylamines and α-ketoacids. Angewandte Chemie International Edition, 45, 1248–1252. DOI: 10.1002/anie.200503991.

    Article  CAS  Google Scholar 

  • Boratyńsky, J., & Roy, R. (1998). High temperature conjugation of proteins with carbohydrates. Glycoconjugate Journal, 15, 131–138. DOI: 10.1023/A:1007067513242.

    Article  Google Scholar 

  • Bulpitt, P., & Aeschlimann, D. (1999). New strategy for chemical modification of hyaluronic acid: Preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. Journal of Biomedical Materials Research Part A, 47, 152–169. DOI: 10.1002/(SICI)1097-4636(199911)47:2<152::AID-JBM5>3.0.CO;2-I.

    Article  CAS  Google Scholar 

  • Bystrický, S., Machová, E., Bartek, P., Kolarova, N., & Kogan, G. (2000). Conjugation of yeast mannans with protein employing cyanopyridinium agent (CDAP). an effective route of antifungal vaccine preparation. Glycoconjugate Journal, 17, 677–680. DOI: 10.1023/A:1011002118819.

    Article  Google Scholar 

  • Canalle, L. A., Löwik, D. W. P. M., & Hest, J. C. M. (2010). Polypeptide-polymer bioconjugates. Chemical Society Reviews, 39, 329–353, DOI: 10.1039/b807871h.

    Article  CAS  Google Scholar 

  • Chan, T. R., Hilgraf, R., Sharpless, K. B., & Fokin, V. V. (2004). Polytriazoles as copper(I)-stabilizing ligands in catalysis. Organic Letters, 6, 2853–2855. DOI: 10.1021/ol0493094.

    Article  CAS  Google Scholar 

  • Dalpathado, D. S., Jiang, H., Kater, M. A., & Desaire, H. (2005). Reductive amination of carbohydrates using NaBH(OAc)3. Analytical and Bioanalytical Chemistry, 381, 1130–1137. DOI: 10.1007/s00216-004-3028-9.

    Article  CAS  Google Scholar 

  • Dawson, P. E., Muir, T. W., Clark-Lewis, I., & Kent, S. B. (1994). Synthesis of proteins by native chemical ligation. Science, 266, 776–779. DOI: 10.1126/science.7973629.

    Article  CAS  Google Scholar 

  • Ďurana, R., Lacík, I., Paulovičová, E., & Bystický, S. (2006). Functionalization of mannans from pathogenic yeasts by different means of oxidations—preparation of precursors for conjugation reactions with respect to preservation of immunological properties. Carbohydrate Polymers, 63, 72–81. DOI: 10.1016/j.carbpol.2005.08.003.

    Article  CAS  Google Scholar 

  • Dziadek, S., Jacques, S., & Bundle, D. R. (2008). A novel linker methodology for the synthesis of tailored conjugate vaccines composed of complex carbohydrate antigens and specific THcell peptide epitopes. Chemistry — A European Journal, 14, 5908–5917. DOI: 10.1002/chem.200800065.

    Article  CAS  Google Scholar 

  • Farkaš, P., & Bystrický, S. (2008). Hydrolysis of the terminal dimethylacetal moiety on the spacers bound to carboxy groups containing glucans. Carbohydrate Polymers, 74, 133–136. DOI: 10.1016/j.carbpol.2008.01.005.

    Article  CAS  Google Scholar 

  • Farkaš, P., & Bystický, S. (2007). Efficient activation of carboxyl polysaccharides for the preparation of conjugates. Carbohydrate Polymers, 68, 187–190. DOI: 10.1016/j.carbpol.2006.07.013.

    Article  CAS  Google Scholar 

  • García, A., Hernández, K., Chico, B., García, D., Villalonga, M. L., & Villalonga, R. (2009). Preparation of thermostable trypsin.polysaccharide neoglycoenzymes through Ugi multicomponent reaction. Journal of Molecular Catalysis B: Enzymatic, 59, 126–130. DOI: 10.1016/j.molcatb.2009.02.001.

    Article  CAS  Google Scholar 

  • Grabarek, Z., & Gergely, J. (1990). Zero-length crosslinking procedure with the use of active esters. Analytical Biochemistry, 185, 131–135. DOI: 10.1016/0003-2697(90)90267-D.

    Article  CAS  Google Scholar 

  • Grandjean, C., Boutonnier, A., Dassy, B., Fournier, J.-M., & Mulard, L. A. (2009). Investigation towards bivalent chemically defined glycoconjugate immunogens prepared from acid-detoxified lipopolysaccharide of Vibrio cholerae O1, serotype Inaba. Glycoconjugate Journal, 26, 41–55. DOI: 10.1007/s10719-008-9160-6.

    Article  CAS  Google Scholar 

  • Grandjean, C., Boutonnier, A., Guerreiro, C., Fournier, J.-M., & Mulard, L. A. (2005). On the preparation of carbohydrate-protein conjugates using the traceless Staudinger ligation. Journal of the Organic Chemistry, 70, 7123–7132. DOI: 10.1021/jo0505472.

    Article  CAS  Google Scholar 

  • Griesbaum, K. (1970). Problems and possibilities of the free-radical addition of thiols to unsaturated compounds. Angewandte Chemie International Edition, 9, 273–287. DOI: 10.1002/anie.197002731.

    Article  CAS  Google Scholar 

  • Gurd, F. R. N. (1967). Carboxymethylation. Methods in Enzymology, 11, 532–541. DOI: 10.1016/S0076-6879(67)11064-1.

    Article  CAS  Google Scholar 

  • Hermanson, G. T. (1996). Bioconjugate techniques. San Diego, CA, USA: Academic Press, Inc.

    Google Scholar 

  • Hou, S.-J., Saksena, R., & Kova., P. (2008). Preparation of glycoconjugates by dialkyl squarate chemistry revisited. Carbohydrate Research, 343, 196–210. DOI: 10.1016/j.carres.2007.10.015.

    Article  CAS  Google Scholar 

  • Hoyle, C. E., & Bowman, C. N. (2010). Thiol-ene click chemistry. Angewandte Chemie International Edition, 49, 1540–1573. DOI: 10.1002/anie.200903924.

    Article  CAS  Google Scholar 

  • Izumi, M., Okumura, S., Yuasa, H., & Hashimoto, H. (2003). Mannose-BSA conjugates: Comparison between commercially available linkers in reactivity and bioactivity. Journal of Carbohydrate Chemistry, 22, 317–329. DOI: 10.1081/CAR-120023475.

    Article  CAS  Google Scholar 

  • Johnson, E. C. B., & Kent, S. B. H. (2006). Insights into the mechanism and catalysis of the native chemical ligation reaction. Journal of the American Chemical Society, 128, 6640–6646. DOI: 10.1021/ja058344i.

    Article  CAS  Google Scholar 

  • Jonkheijm, P., Weinrich, D., Köhn, M., Engelkamp, H., Christianen, P. C. M., Kuhlmann, J., Maan, J. C., Nüsse, D., Schroeder, H., Wacker, R., Breinbauer, R., Niemeyer, C. M., & Waldmann, H. (2008). Photochemical surface patterning by the thiol-ene reaction. Angewandte Chemie International Edition, 47, 4421–4424. DOI: 10.1002/anie.200800101.

    Article  CAS  Google Scholar 

  • Kiick, K. L., Saxon, E., Tirrell, D. A., & Bertozzi, C. R. (2002). Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proceedings of the National Academy of Sciences, 99, 19–24. DOI: 10.1073/pnas.012583299.

    Article  CAS  Google Scholar 

  • Kohn, J., & Wilchek, M. (1983). 1-Cyano-4-dimethylamino pyridinium tetrafluoroborate as a cyanylating agent for the covalent attachment of ligand to polysaccharide resins. FEBS Letters, 154, 209–210. DOI: 10.1016/0014-5793(83)80905-3.

    Article  CAS  Google Scholar 

  • Köhn, M., & Breinbauer, R. (2004). The Staudinger ligation — a gift to chemical biology. Angewandte Chemie International Edition, 43, 3106–3116. DOI: 10.1002/anie.200401744.

    Article  CAS  Google Scholar 

  • Kubler-Kielb, J., Liu, T.-Y., Mocca, C., Majadly, F., Robbins, J. B., & Schneerson, R. (2006). Additional conjugation methods and immunogenicity of Bacillus anthracis poly-γ-D-glutamic acid-protein conjugates. Infection and Immunity, 74, 4744–4749. DOI: 10.1128/IAI.00315-06.

    Article  CAS  Google Scholar 

  • Kubler-Kielb, J., & Pozsgay, V. (2005). A new method for conjugation of carbohydrates to proteins using an aminooxy-thiol heterobifunctional linker. Journal of the Organic Chemistry, 70, 6987–6990. DOI: 10.1021/jo050934b.

    Article  CAS  Google Scholar 

  • Lees, A., Sen, G., & Acosta, A. L. (2006). Versatile and efficient synthesis of protein.polysaccharide conjugate vaccines using aminooxy reagents and oxime chemistry. Vaccine, 24, 716–729. DOI: 10.1016/j.vaccine.2005.08.096.

    Article  CAS  Google Scholar 

  • Leung, C., Chibba, A., Gómez-Biagi, R. F., & Nitz, M. (2009). Efficient synthesis and protein conjugation of β-(1→6)-D-N-acetylglucosamine oligosaccharides from the polysaccharide intercellular adhesin. Carbohydrate Research, 344, 570–575. DOI: 10.1016/j.carres.2008.12.021.

    Article  CAS  Google Scholar 

  • Li, C.-J. (2005). Organic reactions in aqueous media with a focus on carbon.carbon bond formations: A decade update. Chemical Reviews, 105, 3095–3165. DOI: 10.1021/cr030009u.

    Article  CAS  Google Scholar 

  • Lin, F. L., Hoyt, H. M., van Halbeek, H., Bergman, R. G., & Bertozzi, C. R. (2005). Mechanistic investigation of the Staudinger ligation. Journal of the American Chemical Society, 127, 2686–2695. DOI: 10.1021/ja044461m.

    Article  CAS  Google Scholar 

  • Lutz, J.-F., & Börner, H. G. (2008). Modern trends in polymer bioconjugates design. Progress in Polymer Science, 33, 1–39. DOI: 10.1016/j.progpolymsci.2007.07.005.

    Article  CAS  Google Scholar 

  • Lutz, J.-F., & Zarafshani, Z. (2008). Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide.alkyne “click” chemistry. Advanced Drug Delivery Reviews, 60, 958–970. DOI: 10.1016/j.addr.2008.02.004.

    Article  CAS  Google Scholar 

  • Mieszala, M., Kogan, G., & Jennings, H. J. (2003). Conjugation of meningococcal lipooligosaccharides through their lipid A terminus conserves their inner epitopes and results in conjugate vaccines having improved immunological properties. Carbohydrate Research, 338, 167–175. DOI: 10.1016/S0008-6215(02)00395-6.

    Article  CAS  Google Scholar 

  • Montalbetti, C. A. G. N., & Falque, V. (2005). Amide bond formation and peptide coupling. Tetrahedron, 61, 10827–10852. DOI: 10.1016/j.tet.2005.08.031.

    Article  CAS  Google Scholar 

  • Pavliakova, D., Chu, C., Bystrický, S., Tolson, N. W., Shiloach, J., Kaufman, J. B., Bryla, D. A., Robbins, J. B., & Schneerson, R. (1999). Treatment with succinic anhydride improves the immunogenicity of Shigella flexneri Type 2a O-specific polysaccharide-protein conjugates in mice. Infection and Immunity, 67, 5526–5529.

    CAS  Google Scholar 

  • Pawlowski, A., Källenius, G., & Svenson, S. B. (2000). Preparation of pneumococcal capsular polysaccharide-protein conjugate vaccines utilizing new fragmentation and conjugation technologies. Vaccine, 18, 1873–1885. DOI: 10.1016/S0264-410X(99)00336-9.

    Article  CAS  Google Scholar 

  • Pawlowski, A., Källenius, G., & Svenson, S. B. (1999). A new method of non-cross-linking conjugation of polysaccharides to proteins via thioether bonds for the preparation of saccharide.protein conjugate vaccines. Vaccine, 17, 1474–1483. DOI: 10.1016/S0264-410X(98)00385-5.

    Article  CAS  Google Scholar 

  • Pozsgay, V., & Kubler-Kielb, J. (2008). Conjugation methods toward synthetic vaccines. In R. Roy (Ed.), Carbohydrate based vaccines (pp. 36–70). Washington, DC, USA: American Chemical Society.

    Chapter  Google Scholar 

  • Pozsgay, V., Vieira, N. E., & Yergey, A. (2002). A method for bioconjugation of carbohydrates using Diels-Alder cycloaddition. Organic Letters, 4, 3191–3194. DOI: 10.1021/ol026179v.

    Article  CAS  Google Scholar 

  • Rideout, D. C., & Breslow, R. (1980). Hydrophobic acceleration of Diels-Alder reactions. Journal of the American Chemical Society, 102, 7816–7817. DOI: 10.1021/ja00546a048.

    Article  CAS  Google Scholar 

  • Rodionov, V. O., Presolski, S. I., Gardinier, S., Lim, Y.-H., & Finn, M. G. (2007). Benzimidazole and related ligands for Cu-catalyzed azide-alkyne cycloaddition. Journal of the American Chemical Society, 129, 12696–12704. DOI: 10.1021/ja072678l.

    Article  CAS  Google Scholar 

  • Rogers, L. K., Leinweber, B. L., & Smith, C. V. (2006). Detection of reversible protein thiol modifications in tissues. Analytical Biochemistry, 358, 171–184. DOI: 10.1016/j.ab.2006.08.020.

    Article  CAS  Google Scholar 

  • Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective ligation of azides and terminal alkynes. Angewandte Chemie International Edition, 41, 2596–2599.DOI: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4.

    Article  CAS  Google Scholar 

  • Sanki, A. K., Talan, R. S., & Sucheck, S. J. (2009). Synthesis of small glycopeptides by decarboxylative condensation and insight into the reaction mechanism. The Journal of Organic Chemisty, 74, 1886–1896. DOI: 10.1021/jo802278w.

    Article  CAS  Google Scholar 

  • Saxon, E., & Bertozzi, C. R. (2000). Cell surface engineering by a modified Staudinger reaction. Science, 287, 2007–2010. DOI: 10.1126/science.287.5460.2007.

    Article  CAS  Google Scholar 

  • Schlottmann, S. A., Jain, N., Chirmule, N., & Esser, M. T. (2006). A novel chemistry for conjugating pneumococcal polysaccharides to Luminex microspheres. Journal of Immunological Methods, 309, 75–85. DOI: 10.1016/j.jim.2005.11.019.

    Article  CAS  Google Scholar 

  • Shafer, D. E., Toll, B., Schuman, R. F., Nelson, B. L., Mond, J. J., & Lees, A. (2000). Activation of soluble polysaccharides with 1-cyano-4-dimethylaminopyridinium tetrafluoroborate (CDAP) for use in protein-polysaccharide conjugate vaccines and immunological reagents. II. Selective crosslinking of proteins to CDAP-activated polysaccharides. Vaccine, 18, 1273–1281. DOI: 10.1016/S0264-410X(99)00370-9.

    Article  CAS  Google Scholar 

  • Singh, R., & Whitesides, G. M. (1991). A reagent for reduction of disulfide bonds in proteins that reduces disulfide bonds faster than does dithiothreitol. Journal of Organic Chemistry, 56, 2332–2337. DOI: 10.1021/jo00007a018.

    Article  CAS  Google Scholar 

  • Sletten, E. M., & Bertozzi, C. R. (2009). Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angewandte Chemie International Edition, 48, 6974–6998. DOI: 10.1002/anie.200900942.

    Article  CAS  Google Scholar 

  • Sletten, E. M., & Bertozzi, C. R. (2008). A hydrophilic azacyclooctyne for Cu-free click chemistry. Organic Letters, 10, 3097–3099. DOI: 10.1021/ol801141k.

    Article  CAS  Google Scholar 

  • Soellner, M. B., Nilsson, B. L., & Raine, R. T. (2006). Reaction mechanism and kinetics of the traceless Staudinger ligation. Journal of the American Chemical Society, 128, 8820–8828. DOI: 10.1021/ja060484k.

    Article  CAS  Google Scholar 

  • Staudinger, H., & Meyer, J. (1919). Über neue organische Phosphorverbindungen III. Phosphinmethylenderivate und phosphinimine. Helvetica Chimimica Acta, 2, 635–646. DOI: 10.1002/hlca.19190020164.

    Article  CAS  Google Scholar 

  • Tietze, L. F., Schröter, C., Gabius, S., Brinck, U., Goerlach-Graw, A., & Gabius, H.-J. (1991). Conjugation of paminophenyl glycosides with squaric acid diester to a carrier protein and the use of the neoglycoprotein in the histochemical detection of lectins. Bioconjugate Chemistry, 2, 148–153. DOI: 10.1021/bc00009a003.

    Article  CAS  Google Scholar 

  • Wang, J. Y., Chang, A. H. C., Guttormsen, H.-K., Rosas, A. L., & Kaspe, D. L. (2002). Construction of designer glycoconjugate vaccines with size-specific oligosaccharide antigens and site-controlled coupling. Vaccine, 21, 1112–1117. DOI: 10.1016/S0264-410X(02)00625-4.

    Article  Google Scholar 

  • Wang, Q., Chan, T. R., Hilgraf, R., Fokin, V. V., Sharpless, K. B., & Finn, M. G. (2003). Bioconjugation by copper(I)-catalyzed azide-alkine [3 + 2] cycloaddition. Journal of the American Chemical Society, 125, 3192–3193. DOI: 10.1021/ja021381e.

    Article  CAS  Google Scholar 

  • Xin, H., Dziadek, S., Bundle, D. R., & Cutler, J. E. (2008). Synthetic glycopeptide vaccines combining β-mannan and peptide epitopes induce protection against candidiasis. Proceedings of the National Academy of Sciences, 105, 13526–13531. DOI: 10.1073/pnas.0803195105.

    Article  Google Scholar 

  • Xue, J., Pan, Y., & Guo, Z. (2002). Neoglycoprotein cancer vaccines: synthesis of an azido derivative of GM3 and its efficient coupling to proteins through a new linker. Tetrahedron Leters, 43, 1599–1602. DOI: 10.1016/S0040-4039(02)00071-0.

    Article  CAS  Google Scholar 

  • Zhang, J., Yergey, A., Kowalak, J., & Kováč, P. (1998). Linking carbohydrates to proteins using N-(2,2-dimethoxyethyl)-6-hydroxy hexanamide. Tetrahedron, 54, 11783–11792. DOI: 10.1016/S0040-4020(98)83039-1.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavol Farkaš.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farkaš, P., Bystrický, S. Chemical conjugation of biomacromolecules: A mini-review. Chem. Pap. 64, 683–695 (2010). https://doi.org/10.2478/s11696-010-0057-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-010-0057-z

Keywords

Navigation