Skip to main content
Log in

Biological buffered saline solution as solvent in agar-carbomer hydrogel synthesis

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The role of phosphate buffer saline solution (PBS) was investigated here as a solvent in the polycondensation synthesis of an injectable agar-carbomer based hydrogel, a promising new material specifically intended for regenerative medicine applications. The effects of PBS, with respect to standard distilled water (DW), were quantitatively assessed. Experiments were performed both from physico-chemical and biological points of view. Titration showed higher stability due to the presence of the buffer solution; ESEM analysis confirmed its distribution along the polymeric fibers and infrared spectroscopy showed the consequent anionic nature of the polymeric network. This electrostatic nature of the matrix was confirmed by mass equilibrium swelling data performed at different pH values of the swelling medium. A very relevant role of the solvent was observed also with respect to cell housing inside such hydrogels: living cell counts showed a high amount of cells surviving the latency period of encapsulation in hydrogel when PBS was applied while only very few survived in a deionized water based gel. Obtained data allowed a novel understanding of the causeeffect cascades of all observed phenomena which suggest the PBS fundamental role both in fine control of hydrogel preparation and in material tuning according to the specific needs of different target tissues; the latter being a feature of primary importance when applying hydrogels as cell carriers in regenerative medicine applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Brännvall, K., Bergman, K., Wallenquist, U., Svahn, S., Bowden, T., Hilborn, J., & Forsberg-Nilsson, K. (2007). Enhanced neuronal differentiation in a three-dimensional collagenhyaluronan matrix. Journal of Neuroscience Research, 85, 2138–2146. DOI: 10.1002/jnr.21358.

    Article  Google Scholar 

  • Chan, A.W., Whitney, R. A., & Neufeld, R. J. (2009). Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules, 10, 609–616. DOI: 10.1021/bm800594f.

    Article  CAS  Google Scholar 

  • Choi, J., Bodugoz-Senturk, H., Kung, H. J., Malhi, A. S., & Muratoglu, O. K. (2007). Effects of solvent dehydration on creep resistance of poly(vinyl alcohol) hydrogel. Biomaterials, 28, 772–780. DOI: 10.1016/j.biomaterials.2006.09.049.

    Article  CAS  Google Scholar 

  • Crompton, K. E., Goud, J. D., Bellamkonda, R. V., Gengenbach, T. R., Finkelstein, D. I., Horne, M. K., & Forsythe, J. S. (2007). Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering. Biomaterials, 28, 441–449. DOI: 10.1016/j.biomaterials.2006.08.044.

    Article  CAS  Google Scholar 

  • Dulbecco, R., & Vogt, M. (1954). Plaque formation and isolation of pure lines with poliomyelitis viruses. The Journal of Experimental Medicine, 99, 167–182. DOI: 10.1084/jem.99.2.167.

    Article  CAS  Google Scholar 

  • Dumitriu, S. (2002). Polymeric biomaterials (2nd ed.). New York, NY, USA: Marcel Dekker.

    Google Scholar 

  • Ebara, M., Yamato, M., Nagai, S., Aoyagi, T., Kikuchi, A., Sakai, K., & Okano, T. (2004). Incorporation of new carboxylate functionalized co-monomers to temperature-responsive polymer-grafted cell culture surfaces. Surface Science, 570, 134–141. DOI: 10.1016/j.susc.2004.06.183.

    Article  CAS  Google Scholar 

  • Fatimi, A., Tassin, J.-F., Turczyn, R., Axelos, A. V. M., & Weiss, P. (2009). Gelation studies of a cellulose-based biohydrogel: The influence of pH, temperature and sterilization. Acta Biomaterialia, 5, 3423–3432. DOI: 10.1016/j.actbio. 2009.05.030.

    Article  CAS  Google Scholar 

  • Flory, P. J. (1953). Principles of polymer chemistry. Ithaca, NY, USA: Cornell University Press.

    Google Scholar 

  • Gorbet, M. B., Tanti, N. C., Jones, L., & Sheardown, H. (2010). Corneal epithelial cell biocompatibility to silicone hydrogel and conventional hydrogel contact lens packaging solutions. Molecular Vision, 16, 272–282.

    CAS  Google Scholar 

  • Garripelli, V. K., Kim, J.-K., Namgung, R., Kim, W. J., Repka, M. A., & Jo, S. (2010). A novel thermosensitive polymer with pH-dependent degradation for drug delivery. Acta Biomaterialia, 6, 477–485. DOI: 10.1016/j.actbio.2009.07.005.

    Article  CAS  Google Scholar 

  • Hynd, M. R., Turner, J. N., & Shain, W. (2007). Applications of hydrogels for neural cell engineering. Journal of Biomaterial Science, Polymer Edition, 18, 1223–1244. DOI: 10.1163/156856207782177909.

    Article  CAS  Google Scholar 

  • Khan, F., Tare, R. S., Oreffo, R. O. C., & Bradley, M. (2009). Versatile biocompatible polymer hydrogels: scaffolds for cell growth. Angewandte Chemie International Edition, 48, 978–982. DOI: 10.1002/anie.200804096.

    Article  CAS  Google Scholar 

  • Kuckling, D. (2009) Responsive hydrogel layers—from synthesis to applications. Colloid and Polymer Science, 287, 881–891. DOI: 10.1007/s00396-009-2060-x.

    Article  CAS  Google Scholar 

  • Lanza, R., Langer, R., & Vacanti, J. (2000). Principles of tissue engineering. San Diego, CA, USA: Academic Press.

    Google Scholar 

  • Little, L., Healy, K. H., & Schaffer, D. (2008). Engineering biomaterials for synthetic neural stem cell microenvironments. Chemical Reviews, 108, 1787–1796. DOI: 10.1021/cr078228t.

    Article  CAS  Google Scholar 

  • Luo, R., & Li, H. (2009). A modeling study of the effect of environmental ionic valence on the mechanical characteristics of pH-electrosensitive hydrogel. Acta Biomaterialia, 5, 2920–2928. DOI: 10.1016/j.actbio.2009.04.009.

    Article  CAS  Google Scholar 

  • Luo, Y., & Shoichet, M. S. (2004). A photolabile hydrogel for guided three-dimensional cell growth and migration. Nature Materials, 3, 249–253. DOI: 10.1038/nmat1092.

    Article  CAS  Google Scholar 

  • Perale, G., Giordano, C., Bianco, F., Daniele, F., Rossi, F., Matteoli, M., & Masi, M. (2008). Hydrogel for cell housing in the brain and in the spinal cord. The International Journal of Artificial Organs, 31, 613.

    Google Scholar 

  • Rajagopal, K., Lamm, M. S., Haines-Butterick, L. A., Pochan, D. J., & Schneider, J. P. (2009). Tuning the pH responsiveness of β-hairpin peptide folding, self-assembly, and hydrogel material formation. Biomacromolecules, 10, 2619–2625. DOI: 10.1021/bm900544e.

    Article  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed). New York, NY, USA: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Shim, W. S., Yoo, J. S., Bae, Y. H., & Lee, D. S. (2005). Novel injectable pH and temperature sensitive block copolymer hydrogel. Biomacromolecules, 6, 2930–2934. DOI: 10.1021/bm050521k.

    Article  CAS  Google Scholar 

  • Shoichet, M. S. (2010). Polymer scaffolds for biomaterials applications. Macromolecules, 43, 581–591. DOI: 10.1021/ma901530r.

    Article  CAS  Google Scholar 

  • Simonetta, M., & Carrà, S. (1969). General and theoretical aspects of the COOH and COOR groups. In S. Patai (Ed.), Carboxylic acids and esters. New York, NY, USA: Wiley. DOI: 10.1002/9780470771099.ch1.

    Google Scholar 

  • Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A., & Peppas, N. A. (2009). Hydrogels in regenerative medicine. Advanced Materials, 21, 3307–3329. DOI: 10.1002/adma.200802106.

    Article  CAS  Google Scholar 

  • Tabata, Y. (2009). Biomaterial technology for tissue engineering applications. Journal of the Royal Society Interface, 6, S311–S324. DOI: 10.1098/rsif.2008.0448.focus.

    Article  CAS  Google Scholar 

  • Tunesi, M., Rossi, F., Daniele, F., Bossio, C., Perale, G., Bianco, F., Matteoli, M., Giordano, C., & Cigada, A. (2009). A novel hydrogel formulation as promising cell carrier. Regenerative Medicine, 4, S271–S306. DOI: 10.2217/rme.09.s8.

    Article  Google Scholar 

  • Vidović, E., Klee, D., & Höcker, H. (2009). Degradation behavior of hydrogels from poly(vinyl alcohol)-graft-[poly(rac-lactide)/poly(rac-lactide-co-glycolide)]: Influence of the structure and composition on the material’s stability. Journal of Applied Polymer Science, 112, 1538–1545. DOI: 10.1002/app.29445.

    Article  Google Scholar 

  • Wang, C., Adrianus, G. N., Sheng, N., Toh, S., Gong, Y., & Wang, D.-A. (2009). In vitro performance of an injectable hydrogel/microsphere based immunocyte delivery system for localised anti-tumour activity. Biomaterials, 30, 6986–6995. DOI: 10.1016/j.biomaterials.2009.09.006.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Perale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossi, F., Perale, G. & Masi, M. Biological buffered saline solution as solvent in agar-carbomer hydrogel synthesis. Chem. Pap. 64, 573–578 (2010). https://doi.org/10.2478/s11696-010-0052-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-010-0052-4

Keywords

Navigation