Skip to main content
Log in

Comparative evaluation of critical operating conditions for a tubular catalytic reactor using thermal sensitivity and loss-of-stability criteria

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Optimal operation of a chemical reactor according to various performance criteria often drives the system towards critical boundaries. Thus, precise evaluation of runaway limits in the parametric space becomes a crucial problem not only for the reactor’s safe operation, but also for over-designing the system. However, obtaining an accurate estimate for operating limits is a difficult task due to the limited validity of kinetic models describing complex processes, as well as the inherent fluctuations of the system’s properties (catalyst, raw-material quality). This paper presents a comparison of several effective methods of deriving critical conditions for the case of a tubular fixed-bed catalytic reactor used for aniline production in the vapour phase. Even though the methods being compared are related to one another, the generalised sensitivity criterion of Morbidelli-Varma (MV) seems to be more robust, not depending on a particular parameter being perturbed, when compared to the criteria that detect an incipient loss of system stability in the critical region (i.e., div-methods based on the system’s Jacobian and Green’s function matrix analysis). Combined application of div- and MV criteria allows for an accurate evaluation of the distance from the reactor’s nominal conditions to the safety limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrover, A., Creta, F., Giona, M., & Valorani, M. (2007) Explosion limits and runaway criteria: A stretching-based approach. Chemical Engineering Science, 62, 1171–1183. DOI: 10.1016/j.ces.2006.11.007.

    Article  CAS  Google Scholar 

  • Alós, M. A., Nomen, R., Sempere, J. M., Strozzi, F., & Zaldívar, J. M. (1998) Generalized criteria for boundary safe conditions in semi-batch processes: simulated analysis and experimental results. Chemical Engineering and Processing, 37, 405–421. DOI: 10.1016/S0255-2701(98)00048-8.

    Article  Google Scholar 

  • Balakotaiah, V., & Luss, D. (2004) Explicit runaway criterion for catalytic reactors with transport limitations. AIChE Journal, 37, 1780–1788. DOI: 10.1002/aic.690371203.

    Article  Google Scholar 

  • Bonvin, D. (1998) Optimal operation of batch reactors-a personal view. Journal of Process Control, 8, 355–368. DOI: 10.1016/S0959-1524(98)00010-9.

    Article  CAS  Google Scholar 

  • Bosch, J., Kerr, D. C., Snee, T. J., Strozzi, F., & Zaldívar, J. M. (2004) Runaway detection in a pilot-plant facility. Industrial & Engineering Chemistry Research, 43, 7019–7024. DOI: 10.1021/ie049540l.

    Article  CAS  Google Scholar 

  • Chen, M. S. K., Erickson, L. E., & Fan, L. (1970) Consideration of sensitivity and parameter uncertainty in optimal process design. Industrial & Engineering Chemistry Process Design and Development, 9, 514–521. DOI: 10.1021/i260036a004.

    Article  CAS  Google Scholar 

  • Doraiswamy, L. K., & Sharma, M. M. (1984) Heterogeneous reactions: Analysis, examples, and reactor design (Vol. 1). New York, NY, USA: Wiley.

    Google Scholar 

  • Fotopoulos, J., Georgakis, C., & Stenger, H. G., Jr. (1994) Uncertainty issues in the modeling and optimization of batch reactors with tendency models. Chemical Engineering Science, 49, 5533–5547. DOI: 10.1016/0009-2509(94)00336-X.

    Article  CAS  Google Scholar 

  • Froment, G. F., & Bischoff, K. B. (1990) Chemical reactor analysis and design. New York, NY, USA: Wiley.

    Google Scholar 

  • Grewer, T. (1994). Thermal hazards of chemical reactions. Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Hedges, R. M., Jr., & Rabitz, H. (1985) Parametric sensitivity of system stability in chemical dynamics. Journal of Chemical Physics, 82, 3674–3684. DOI: 10.1063/1.448903.

    Article  CAS  Google Scholar 

  • Maria, G., & Stefan, D.-N. (2010) Variability of operating safety limits with catalyst within a fixed-bed catalytic reactor for vapour-phase nitrobenzene hydrogenation. Journal of Loss Prevention in the Process Industries, 23, 112–126. DOI: 10.1016/j.jlp.2009.06.007.

    Article  CAS  Google Scholar 

  • Mönnigmann, M. (2004) Constructive nonlinear dynamics for the design of chemical engineering processes. PhD Thesis, RWTH Aachen, Germany: VDI Verlag.

    Google Scholar 

  • Mönnigmann, M., & Marquardt, W. (2003) Steady-state process optimization with guaranted robust stability and feasibility. AIChE Journal, 49, 3110–3126. DOI: 10.1002/aic.690491212.

    Article  Google Scholar 

  • Morbidelli, M., & Varma, A. (1988) A generalized criterion for parametric sensitivity: Application to thermal explosion theory. Chemical Engineering Science, 43, 91–102. DOI: 10.1016/0009-2509(88)87129-X.

    Article  CAS  Google Scholar 

  • Quina, M. M. J., & Quinta Ferreira, R. M. (1999) Thermal runaway conditions of a partially diluted catalytic reactor. Industrial & Engineering Chemistry Research, 38, 4615–4623. DOI: 10.1021/ie9807295.

    Article  CAS  Google Scholar 

  • Rihani, D. N., Narayanan, T. K., & Doraiswamy, L. K. (1965) Kinetics of catalytic vapor-phase hydrogenation of nitrobenzene to aniline. Industrial & Engineering Chemistry Process Design and Development, 4, 403–410. DOI: 10.1021/i260016a012.

    Article  CAS  Google Scholar 

  • Ruppen, D., Bonvin, D., & Rippin, D. W. T. (1997) Implementation of adaptive optimal operation for a semi-batch reaction system. Computers & Chemical Engineering, 22, 185–199. DOI: 10.1016/S0098-1354(96)00358-4.

    Article  Google Scholar 

  • Satterfield, C. N. (1970) Mass transfer in heterogeneous catalysis. Cambridge, MA, USA: MIT Press.

    Google Scholar 

  • Seinfeld, J., & McBride, W. L. (1970) Optimization with multiple performance criteria. Application to minimization of parameter sensitivities in a refinery model. Industrial & Engineering Chemistry Process Design and Development, 9, 53–57. DOI: 10.1021/i260033a010.

    Article  CAS  Google Scholar 

  • Srinivasan, B., Bonvin, D., Visser, E., & Palanki, S. (2002) Dynamic optimization of batch processes: II. Role of measurements in handling uncertainty, Computers & Chemical Engineering, 27, 27–44. DOI: 10.1016/S0098-1354(02)00117-5.

    Article  Google Scholar 

  • Stefan, D. N., & Maria, G. (2009) Derivation of operating region runaway boundaries for the vapour phase catalytic reactor used for aniline production. Revista de Chimie, 60, 949–956.

    CAS  Google Scholar 

  • Stoessel, F. (2008). Thermal safety of chemical processes. Risk assessment and process design. Weinheim, Germany: Wiley-VCH.

    Book  Google Scholar 

  • Strozzi, F., & Zaldívar, J. M. (1994) A general method for assessing the thermal stability of batch chemical reactors by sensitivity calculation based on Lyapunov exponents. Chemical Engineering Science, 49, 2681–2688. DOI: 10.1016/0009-2509(94)E0067-Z.

    Article  CAS  Google Scholar 

  • Strozzi, F., Zaldívar, J. M., Kronberg, A. E., & Westerterp, K. R. (1999) On-line runaway detection in batch reactors using chaos theory techniques. AIChE Journal, 45, 2429–2443. DOI: 10.1002/aic.690451116.

    Article  CAS  Google Scholar 

  • Trambouze, P., Van Landeghem, H., & Wauquier, J. P. (1988) Chemical reactors: Design, engineering, operation. Paris, France: Editions Technip.

    Google Scholar 

  • Vajda, S., & Rabitz, H. (1992) Parametric sensitivity and self-similarity in thermal explosion theory. Chemical Engineering Science, 47, 1063–1078. DOI: 10.1016/0009-2509(92)80232-2.

    Article  CAS  Google Scholar 

  • Varma, A., Morbidelli, M., & Wu, H. (1999). Parametric sensitivity in chemical systems. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Watanabe, N., Nishimura, Y., & Matsubara, M. (1973) Optimal design of chemical processes involving parameter uncertainty. Chemical Engineering Science, 28, 905–913. DOI: 10.1016/0009-2509(77)80025-0.

    Article  CAS  Google Scholar 

  • Westerterp, K. R., & Molga, E. J. (2006) Safety and runaway prevention in batch and semibatch reactors-A review. Chemical Engineering Research and Design, 84, 543–552. DOI: 10.1205/cherd.05221.

    Article  CAS  Google Scholar 

  • Westerterp, K. R., & Molga, E. J. (2004) No more runaways in fine chemical reactors. Industrial & Engineering Chemistry Research, 43, 4585–4594. DOI: 10.1021/ie030725m.

    Article  CAS  Google Scholar 

  • Wen, C. Y., & Chang, M. T. (1968) Optimal design of systems involving parameter uncertainty. Industrial & Engineering Chemistry Process Design and Development, 7, 49–53. DOI: 10.1021/i260025a010.

    Article  CAS  Google Scholar 

  • Zaldívar, J. M., Cano, J., Alós, M. A., Sempere, J., Nomen, R., Lister, D., Maschio, G., Obertopp, T., Gilles, E. D., Bosch, J., & Strozzi, F. (2003) A general criterion to define runaway limits in chemical reactors. Journal of Loss Prevention in the Process Industries, 16, 187–200. DOI: 10.1016/S0950-4230(03)00003-2.

    Article  Google Scholar 

  • Zaldívar Comenges, J. M., Strozzi, F., & Bosch Pagans, J. (2005) Divergence as a goal function for control and on-line optimization. AIChE Journal, 51, 678–681. DOI: 10.1002/aic.10339.

    Article  Google Scholar 

  • Zaldívar, J.-M., & Strozzi, F. (2010) Phase-space volume based control of semibatch reactors. Chemical Engineering Research and Design, 88, 320–330. DOI: 10.1016/j.cherd.2009.04.008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gheorghe Maria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maria, G., Ştefan, DN. Comparative evaluation of critical operating conditions for a tubular catalytic reactor using thermal sensitivity and loss-of-stability criteria. Chem. Pap. 64, 450–460 (2010). https://doi.org/10.2478/s11696-010-0035-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-010-0035-5

Keywords

Navigation