Advertisement

Chemical Papers

, Volume 64, Issue 4, pp 491–498 | Cite as

Synthesis of brushite nanoparticles at different temperatures

  • Sujata Singh
  • Vaishali Singh
  • Saroj Aggarwal
  • Uttam Kumar MandalEmail author
Original Paper

Abstract

Phase pure, stable nanocrystalline brushite particles with average diameter in the range of 23–87 nm were obtained by the reverse microemulsion technique employing a mixture of surfactants (Aliquat 336 & Tween 80) as template directing agents, and calcium nitrate tetrahydrate and biammonium hydrogen phosphate as precursors. Particle sizes and morphologies were tuned by adjusting the reaction parameters, precursor concentration and temperature. FTIR, TEM, and XRD were used to characterize morphological changes of as synthesized nanoparticles. FTIR and XRD analyses confirmed the formation of brushite nanoparticles. Variations in the reaction temperature resulted in changes in the particle morphology and distribution. At high temperatures (60°C), the sample exhibited high monodispersity and spherical morphology with the average grain size of 42 nm. At low temperatures (6°C), nanoflakes were formed. The results suggest that a reverse microemulsion system provides facile media for control of the phase and morphology of nanoscale calcium phosphate biominerals. A mechanism providing an insight into the formation of brushite particles has also been proposed.

Keywords

reverse microemulsion brushite mixed surfactants nanoparticle morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbona, F., Madsen, H. E. L., & Boistelle, R. (1986) The initial phases of calcium and magnesium phosphates precipitated from solutions of high to medium concentrations. Journal of Crystal Growth, 74, 581–590. DOI: 10.1016/0022-0248(86)90205-8.CrossRefGoogle Scholar
  2. Arifuzzaman, S. M., & Rohani, S. (2004) Experimental study of brushite precipitation. Journal of Crystal Growth, 267, 624–634. DOI: 10.1016/j.jcrysgro.2004.04.024.CrossRefGoogle Scholar
  3. Bailey, R. T., & Holt, C. (1989). Fourier transform infrared spectroscopy and characterization of biological calcium phosphates. In D. W. L. Huskins (Ed.), Calcified tissue (pp. 93–119). Boca Raton, FL, USA: CRC Press.Google Scholar
  4. Barone, J. P., & Nancollas, G. H. (1977) The seeded growth of calcium phosphates. The effect of solid/solution ratio in controlling the nature of the growth phase. Journal of Colloid and Interface Science, 62, 421–431. DOI: 10.1016/0021-9797(77)90093-5.CrossRefGoogle Scholar
  5. Berry, E. E., & Baddiel, C. B. (1967) The infra-red spectrum of dicalcium phosphate dihydrate (brushite). Spectrochimica Acta Part A: Molecular Spectroscopy, 23, 2089–2097. DOI: 10.1016/0584-8539(67)80097-7.CrossRefGoogle Scholar
  6. Bohner, M., Merkle, H. P., & Lemaître, J. (2000) In vitro aging of calcium phosphate cement. Journal of Materials Science: Materials in Medicine, 11, 155–162. DOI: 10.1023/A:1008927624493.CrossRefGoogle Scholar
  7. Boskey, A. L., & Posner, A. S. (1973) Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite. A pH-dependent, solution-mediated, solid-solid conversion. The Journal of Physical Chemistry, 77, 2313–2317. DOI: 10.1021/j100638a011.CrossRefGoogle Scholar
  8. Cai, Y., Pan, H., Xu, X., Hu, Q., Li, L., & Tang, R. (2007) Ultrasonic controlled morphology transformation of hollow calcium phosphate nanospheres: A Smart and biocompatible drug release system. Chemistry of Materials, 19, 3081–3083. DOI: 10.1021/cm070298t.CrossRefGoogle Scholar
  9. Chen, X., Sun, X., & Li, Y. (2002) Self-assembling vanadium oxide nanotubes by organic molecular templates. Inorganic Chemistry, 41, 4524–4530. DOI: 10.1021/ic020092o.CrossRefGoogle Scholar
  10. Fowler, C. E., Li, M., Mann, S., & Margolis, H. C. (2005) Influence of surfactant assembly on the formation of calcium phosphate materials-A model for dental enamel formation. Journal of Material Chemistry, 15, 3317–3325. DOI: 10.1039/b503312h.CrossRefGoogle Scholar
  11. Guo, G., Sun, Y., Wang, Z., & Guo, H. (2005) Preparation of hydroxyapatite nanoparticles by reverse microemulsion. Ceramic International, 31, 869–872. DOI: 10.1016/j.ceramint.2004.10.003.CrossRefGoogle Scholar
  12. Hlabse, T., & Walton, A. G. (1965) The nucleation of calcium phosphate from solution. Analytica Chimica Acta, 33, 373–377. DOI: 10.1016/S0003-2670(01)84906-0.CrossRefGoogle Scholar
  13. Khor, K. A., & Cheang, P. (1997) Plasma sprayed hydroxyapatite (HA) coatings produced with flame spheroidised powders. Journal of Materials Processing Technology, 63, 271–276. DOI: 10.1016/S0924-0136(96)02634-9.CrossRefGoogle Scholar
  14. Kumar, M., Dasarathy, H., & Riley, C. (1999a) Electrodeposition of brushite coatings and their transformation to hydroxyapatite in aqueous solutions. Journal of Biomedical and Materials Research, 45, 302–310. DOI: 302-310.10.1002/(SICI)1097-4636(19990615)45:4<302::AID-JBM4>3.0.CO;2-A.CrossRefGoogle Scholar
  15. Kumar, M., Xie, J., Chittur, K., & Riley, C. (1999b) Transformation of modified brushite to hydroxyapatite in aqueous solution: effects of potassium substitution. Biomaterials, 20, 1389–1399. DOI: 10.1016/S0142-9612(99)00043-5.CrossRefGoogle Scholar
  16. Li, M., Schnablegger, H., & Mann, S. (1999) Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature, 402, 393–395. DOI: 10.1038/46509.CrossRefGoogle Scholar
  17. Li, Y. D., Li, X. L., He, R. R., Zhu, J., & Deng, Z. X. (2002) Artificial lamellar mesostructures to WS2 nanotubes. Journal of the American Chemical Society, 124, 1411–1416. DOI: 10.1021/ja012055m.CrossRefGoogle Scholar
  18. Lim, H. N., Kassim, A., Huang, N. M., Hashim, R., Radiman, S., Khiew, P. S., & Chiu, W. S. (2009) Fabrication and characterization of 1D brushite nanomaterials via sucrose ester reverse microemulsion. Ceramics International, 35, 2891–2897. DOI: 10.1016/j.ceramint.2009.03.044.CrossRefGoogle Scholar
  19. Montastruc, L., Azzaro-Pantel, C., Biscans, B., Cabassud, M., & Domenech, S. (2003) A thermochemical approach for calcium phosphate precipitation modeling in a pellet reactor. Chemical Engineering Journal, 94, 41–50. DOI: 10.1016/S1385-8947(03)00044-5.CrossRefGoogle Scholar
  20. Nielson, A. E., & Söhnel, O. (1971) Interfacial tensions electrolyte crystal-aqueous solution, from nucleation data. Journal of Crystal Growth, 11, 233–242. DOI: 10.1016/0022-0248(71)90090-X.CrossRefGoogle Scholar
  21. Oliveira, C., Ferreira, A., & Rocha, F. (2007) Dicalcium phosphate dihydrate precipitation: Characterization and crystal growth. Chemical Engineering Research and Design, 85(A12), 1655–1661. DOI: 10.1205/cherd06237.CrossRefGoogle Scholar
  22. Pennel, G., Leroy, G., Rey, C., Sombret, B., Huvenne, J. P., & Bres, E. (1997) Infrared and Raman microspectrometry study of fluoro-fluoro-hydroxy and hydroxy-apatite powders. Journal of Material Science: Materials in Medicine, 8, 271–276. DOI: 10.1023/A:1018504126866.CrossRefGoogle Scholar
  23. Roop Kumar, R., Prakash, K. H., Yennie, K., Cheang, P., & Khor, K. A. (2005) Synthesis and characterisation of hydroxyapatite nano-rods/whiskers. Key Engineering Materials, 284–286, 59–62. DOI: 10.4028/www.scientific.net/KEM.284-286.59.Google Scholar
  24. Sainz-Díaz, C. I., Villacampa, A., & Otálora, F. (2004) Crystallographic properties of the calcium phosphate mineral, brushite, by means of First Principles calculations. American Mineralogist, 89, 307–313.Google Scholar
  25. Singh, S., Bhardwaj, P., Singh, V., Aggarwal, S., & Mandal, U. K. (2008) Synthesis of nanocrystalline calcium phosphate in microemulsion-effect of nature of surfactants. Journal of Colloid and Interface Science, 319, 322–329. DOI: 10.1016/j.jcis.2007.09.059.CrossRefGoogle Scholar
  26. Tas, A. C. (2000) Synthesis of biomimetic Ca-hydroxyapatite powders at 37.C in synthetic body fluids. Biomaterials, 21, 1429–1438. DOI: 10.1016/S0142-9612(00)00019-3.CrossRefGoogle Scholar
  27. Tiselius, A., Hjertén, S., & Levin, Ö. (1995) Protein chromatography on calcium phosphate columns. Archives of Biochemistry and Biophysics, 65, 132–155. DOI: 10.1016/0003-9861(56)90183-7.CrossRefGoogle Scholar
  28. Tortet, L., Gavarri, J. R., Nihoul, G., & Dianoux, A. J. (1997) Study of protonic mobility in CaHPO4·2H2O (brushite) and CaHPO4 (monetite) by infrared spectroscopy and neutron scattering. Journal of Solid State Chemistry, 132, 6–16. DOI: 10.1006/jssc.1997.7383.CrossRefGoogle Scholar
  29. Uota, M., Arakawa, H., Kitamura, N., Yoshimura, T., Tanaka, J., & Kijima, T. (2005) Synthesis of high surface area hydroxyapatite nanoparticles by mixed surfactant-mediated approach. Langmuir, 21, 4724–4728. DOI: 10.1021/la050029m.CrossRefGoogle Scholar
  30. Welch, S., Tuanton, A. E., & Banfield, J. F. (2002) Effect of microorganisms and microbial metabolites on apatite dissolution. Geomicrobiology Journal, 19, 343–367. DOI: 10.1080/01490450290098414.CrossRefGoogle Scholar
  31. Xiao, X. F., & Liu, R. F. (2006) Effect of suspension stability on electrophoretic deposition of hydroxyapatite coatings. Material Letters, 60, 2627–2632. DOI: 10.1016/j.matlet.2006.01.048.CrossRefGoogle Scholar
  32. Xie, J., Riley, C., Kumar, M., & Chittur, K. (2002) FTIR/ATR study of protein adsorption and brushite transformation to hydroxyapatite. Biomaterials, 23, 3609–3616. DOI: 10.1016/S0142-9612(02)00090-X.CrossRefGoogle Scholar
  33. Xu, J., Butler, I. S., & Gilson, D. F. R. (1999) FT-Raman and high-pressure infrared spectroscopic studies of dicalcium phosphate dihydrate (CaHPO4·2H2O) and anhydrous dicalcium phosphate (CaHPO4). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 55, 2801–2809. DOI: 10.1016/S1386-1425(99)00090-6.CrossRefGoogle Scholar
  34. Zhang, Y., & Lu, J. (2008) A mild and efficient biomimetic synthesis of rodlike hydroxyapatite particles with a high aspect ratio using polyvinylpyrrolidone as capping agent. Crystal Growth & Design, 8, 2101–2107. DOI: 10.1021/cg060880e.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2010

Authors and Affiliations

  • Sujata Singh
    • 1
  • Vaishali Singh
    • 1
  • Saroj Aggarwal
    • 1
  • Uttam Kumar Mandal
    • 2
    Email author
  1. 1.University School of Basic and Applied Sciences, GGS Indraprastha UniversityKashmere Gate, DelhiIndia
  2. 2.University School of Chemical Technology, GGS Indraprastha UniversityKashmere Gate, DelhiIndia

Personalised recommendations