Skip to main content

Advertisement

Log in

Synthesis of brushite nanoparticles at different temperatures

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Phase pure, stable nanocrystalline brushite particles with average diameter in the range of 23–87 nm were obtained by the reverse microemulsion technique employing a mixture of surfactants (Aliquat 336 & Tween 80) as template directing agents, and calcium nitrate tetrahydrate and biammonium hydrogen phosphate as precursors. Particle sizes and morphologies were tuned by adjusting the reaction parameters, precursor concentration and temperature. FTIR, TEM, and XRD were used to characterize morphological changes of as synthesized nanoparticles. FTIR and XRD analyses confirmed the formation of brushite nanoparticles. Variations in the reaction temperature resulted in changes in the particle morphology and distribution. At high temperatures (60°C), the sample exhibited high monodispersity and spherical morphology with the average grain size of 42 nm. At low temperatures (6°C), nanoflakes were formed. The results suggest that a reverse microemulsion system provides facile media for control of the phase and morphology of nanoscale calcium phosphate biominerals. A mechanism providing an insight into the formation of brushite particles has also been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbona, F., Madsen, H. E. L., & Boistelle, R. (1986) The initial phases of calcium and magnesium phosphates precipitated from solutions of high to medium concentrations. Journal of Crystal Growth, 74, 581–590. DOI: 10.1016/0022-0248(86)90205-8.

    Article  CAS  Google Scholar 

  • Arifuzzaman, S. M., & Rohani, S. (2004) Experimental study of brushite precipitation. Journal of Crystal Growth, 267, 624–634. DOI: 10.1016/j.jcrysgro.2004.04.024.

    Article  CAS  Google Scholar 

  • Bailey, R. T., & Holt, C. (1989). Fourier transform infrared spectroscopy and characterization of biological calcium phosphates. In D. W. L. Huskins (Ed.), Calcified tissue (pp. 93–119). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Barone, J. P., & Nancollas, G. H. (1977) The seeded growth of calcium phosphates. The effect of solid/solution ratio in controlling the nature of the growth phase. Journal of Colloid and Interface Science, 62, 421–431. DOI: 10.1016/0021-9797(77)90093-5.

    Article  CAS  Google Scholar 

  • Berry, E. E., & Baddiel, C. B. (1967) The infra-red spectrum of dicalcium phosphate dihydrate (brushite). Spectrochimica Acta Part A: Molecular Spectroscopy, 23, 2089–2097. DOI: 10.1016/0584-8539(67)80097-7.

    Article  CAS  Google Scholar 

  • Bohner, M., Merkle, H. P., & Lemaître, J. (2000) In vitro aging of calcium phosphate cement. Journal of Materials Science: Materials in Medicine, 11, 155–162. DOI: 10.1023/A:1008927624493.

    Article  CAS  Google Scholar 

  • Boskey, A. L., & Posner, A. S. (1973) Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite. A pH-dependent, solution-mediated, solid-solid conversion. The Journal of Physical Chemistry, 77, 2313–2317. DOI: 10.1021/j100638a011.

    Article  CAS  Google Scholar 

  • Cai, Y., Pan, H., Xu, X., Hu, Q., Li, L., & Tang, R. (2007) Ultrasonic controlled morphology transformation of hollow calcium phosphate nanospheres: A Smart and biocompatible drug release system. Chemistry of Materials, 19, 3081–3083. DOI: 10.1021/cm070298t.

    Article  CAS  Google Scholar 

  • Chen, X., Sun, X., & Li, Y. (2002) Self-assembling vanadium oxide nanotubes by organic molecular templates. Inorganic Chemistry, 41, 4524–4530. DOI: 10.1021/ic020092o.

    Article  CAS  Google Scholar 

  • Fowler, C. E., Li, M., Mann, S., & Margolis, H. C. (2005) Influence of surfactant assembly on the formation of calcium phosphate materials-A model for dental enamel formation. Journal of Material Chemistry, 15, 3317–3325. DOI: 10.1039/b503312h.

    Article  CAS  Google Scholar 

  • Guo, G., Sun, Y., Wang, Z., & Guo, H. (2005) Preparation of hydroxyapatite nanoparticles by reverse microemulsion. Ceramic International, 31, 869–872. DOI: 10.1016/j.ceramint.2004.10.003.

    Article  CAS  Google Scholar 

  • Hlabse, T., & Walton, A. G. (1965) The nucleation of calcium phosphate from solution. Analytica Chimica Acta, 33, 373–377. DOI: 10.1016/S0003-2670(01)84906-0.

    Article  CAS  Google Scholar 

  • Khor, K. A., & Cheang, P. (1997) Plasma sprayed hydroxyapatite (HA) coatings produced with flame spheroidised powders. Journal of Materials Processing Technology, 63, 271–276. DOI: 10.1016/S0924-0136(96)02634-9.

    Article  Google Scholar 

  • Kumar, M., Dasarathy, H., & Riley, C. (1999a) Electrodeposition of brushite coatings and their transformation to hydroxyapatite in aqueous solutions. Journal of Biomedical and Materials Research, 45, 302–310. DOI: 302-310.10.1002/(SICI)1097-4636(19990615)45:4<302::AID-JBM4>3.0.CO;2-A.

    Article  CAS  Google Scholar 

  • Kumar, M., Xie, J., Chittur, K., & Riley, C. (1999b) Transformation of modified brushite to hydroxyapatite in aqueous solution: effects of potassium substitution. Biomaterials, 20, 1389–1399. DOI: 10.1016/S0142-9612(99)00043-5.

    Article  CAS  Google Scholar 

  • Li, M., Schnablegger, H., & Mann, S. (1999) Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature, 402, 393–395. DOI: 10.1038/46509.

    Article  CAS  Google Scholar 

  • Li, Y. D., Li, X. L., He, R. R., Zhu, J., & Deng, Z. X. (2002) Artificial lamellar mesostructures to WS2 nanotubes. Journal of the American Chemical Society, 124, 1411–1416. DOI: 10.1021/ja012055m.

    Article  CAS  Google Scholar 

  • Lim, H. N., Kassim, A., Huang, N. M., Hashim, R., Radiman, S., Khiew, P. S., & Chiu, W. S. (2009) Fabrication and characterization of 1D brushite nanomaterials via sucrose ester reverse microemulsion. Ceramics International, 35, 2891–2897. DOI: 10.1016/j.ceramint.2009.03.044.

    Article  CAS  Google Scholar 

  • Montastruc, L., Azzaro-Pantel, C., Biscans, B., Cabassud, M., & Domenech, S. (2003) A thermochemical approach for calcium phosphate precipitation modeling in a pellet reactor. Chemical Engineering Journal, 94, 41–50. DOI: 10.1016/S1385-8947(03)00044-5.

    Article  CAS  Google Scholar 

  • Nielson, A. E., & Söhnel, O. (1971) Interfacial tensions electrolyte crystal-aqueous solution, from nucleation data. Journal of Crystal Growth, 11, 233–242. DOI: 10.1016/0022-0248(71)90090-X.

    Article  Google Scholar 

  • Oliveira, C., Ferreira, A., & Rocha, F. (2007) Dicalcium phosphate dihydrate precipitation: Characterization and crystal growth. Chemical Engineering Research and Design, 85(A12), 1655–1661. DOI: 10.1205/cherd06237.

    Article  CAS  Google Scholar 

  • Pennel, G., Leroy, G., Rey, C., Sombret, B., Huvenne, J. P., & Bres, E. (1997) Infrared and Raman microspectrometry study of fluoro-fluoro-hydroxy and hydroxy-apatite powders. Journal of Material Science: Materials in Medicine, 8, 271–276. DOI: 10.1023/A:1018504126866.

    Article  Google Scholar 

  • Roop Kumar, R., Prakash, K. H., Yennie, K., Cheang, P., & Khor, K. A. (2005) Synthesis and characterisation of hydroxyapatite nano-rods/whiskers. Key Engineering Materials, 284–286, 59–62. DOI: 10.4028/www.scientific.net/KEM.284-286.59.

    Google Scholar 

  • Sainz-Díaz, C. I., Villacampa, A., & Otálora, F. (2004) Crystallographic properties of the calcium phosphate mineral, brushite, by means of First Principles calculations. American Mineralogist, 89, 307–313.

    Google Scholar 

  • Singh, S., Bhardwaj, P., Singh, V., Aggarwal, S., & Mandal, U. K. (2008) Synthesis of nanocrystalline calcium phosphate in microemulsion-effect of nature of surfactants. Journal of Colloid and Interface Science, 319, 322–329. DOI: 10.1016/j.jcis.2007.09.059.

    Article  CAS  Google Scholar 

  • Tas, A. C. (2000) Synthesis of biomimetic Ca-hydroxyapatite powders at 37.C in synthetic body fluids. Biomaterials, 21, 1429–1438. DOI: 10.1016/S0142-9612(00)00019-3.

    Article  CAS  Google Scholar 

  • Tiselius, A., Hjertén, S., & Levin, Ö. (1995) Protein chromatography on calcium phosphate columns. Archives of Biochemistry and Biophysics, 65, 132–155. DOI: 10.1016/0003-9861(56)90183-7.

    Article  Google Scholar 

  • Tortet, L., Gavarri, J. R., Nihoul, G., & Dianoux, A. J. (1997) Study of protonic mobility in CaHPO4·2H2O (brushite) and CaHPO4 (monetite) by infrared spectroscopy and neutron scattering. Journal of Solid State Chemistry, 132, 6–16. DOI: 10.1006/jssc.1997.7383.

    Article  CAS  Google Scholar 

  • Uota, M., Arakawa, H., Kitamura, N., Yoshimura, T., Tanaka, J., & Kijima, T. (2005) Synthesis of high surface area hydroxyapatite nanoparticles by mixed surfactant-mediated approach. Langmuir, 21, 4724–4728. DOI: 10.1021/la050029m.

    Article  CAS  Google Scholar 

  • Welch, S., Tuanton, A. E., & Banfield, J. F. (2002) Effect of microorganisms and microbial metabolites on apatite dissolution. Geomicrobiology Journal, 19, 343–367. DOI: 10.1080/01490450290098414.

    Article  CAS  Google Scholar 

  • Xiao, X. F., & Liu, R. F. (2006) Effect of suspension stability on electrophoretic deposition of hydroxyapatite coatings. Material Letters, 60, 2627–2632. DOI: 10.1016/j.matlet.2006.01.048.

    Article  CAS  Google Scholar 

  • Xie, J., Riley, C., Kumar, M., & Chittur, K. (2002) FTIR/ATR study of protein adsorption and brushite transformation to hydroxyapatite. Biomaterials, 23, 3609–3616. DOI: 10.1016/S0142-9612(02)00090-X.

    Article  CAS  Google Scholar 

  • Xu, J., Butler, I. S., & Gilson, D. F. R. (1999) FT-Raman and high-pressure infrared spectroscopic studies of dicalcium phosphate dihydrate (CaHPO4·2H2O) and anhydrous dicalcium phosphate (CaHPO4). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 55, 2801–2809. DOI: 10.1016/S1386-1425(99)00090-6.

    Article  Google Scholar 

  • Zhang, Y., & Lu, J. (2008) A mild and efficient biomimetic synthesis of rodlike hydroxyapatite particles with a high aspect ratio using polyvinylpyrrolidone as capping agent. Crystal Growth & Design, 8, 2101–2107. DOI: 10.1021/cg060880e.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uttam Kumar Mandal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S., Singh, V., Aggarwal, S. et al. Synthesis of brushite nanoparticles at different temperatures. Chem. Pap. 64, 491–498 (2010). https://doi.org/10.2478/s11696-010-0032-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-010-0032-8

Keywords

Navigation