Chemical Papers

, Volume 64, Issue 4, pp 515–522 | Cite as

Theoretical binding affinities and spectra of complexes formed by a cyclic β-peptoid with amino acids

  • Yu Sun
  • Jinpei Du
  • Ying Wang
  • Shi WuEmail author
Original Paper


Binding affinities of a cyclic β-peptoid to amino acids were studied using the density functional theory (DFT) at the B3LYP/6-311G(d,p) level after the basis set superior error (BSSE). The host molecule possesses binding ability to amino acids since the binding energies of the complexes formed are negative. The complexes were stabilized via hydrogen bonds between the host and the guest molecules. Based on the B3LYP/6-31G(d) optimized geometries, electronic spectra of the complexes were calculated using the INDO/CIS method. 13C NMR spectra and nucleus-independent chemical shift (NICS) values of the complexes were computed at the B3LYP/6-31G(d) level. Carbon atoms in the carboxyl groups of the complexes are shifted downfield relative to those of the host. Some complexes exhibit aromaticity although the host shows anti-aromaticity. Formation of hydrogen bonds leads to cyclic current formation in these complexes.


cyclic β-peptoid amino acids binding energy chemical shift aromaticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An, W., Shao, N., Bulusu, S., & Zeng, X. C. (2008). Ab initio calculation of carbon clusters. II. Relative stabilities of fullerene and nonfullerene C24. Journal of Chemical Physics, 128, 084301. DOI: 10.1063/1.2831917.CrossRefGoogle Scholar
  2. Barron, A. E., & Zuckermann, R. N. (1999). Bioinspired polymeric materials: in-between proteins and plastics. Current Opinions in Chemical Biology, 3, 681–687. DOI: 10.1016/S1367-5931(99)00026-5.CrossRefGoogle Scholar
  3. Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98, 5648–5652. DOI: 10.1063/1.464913.CrossRefGoogle Scholar
  4. Chen, X., Teng, Q., Wu, S., & Xu, L. (2007). Theoretical studies on supramolecular complexes of anthyridone with various diaminopyridine derivatives. Indian Journal of Chemistry, 46A, 391–395.Google Scholar
  5. Chen, Z., & King, R. (2005). Spherical aromaticity: recent work on fullerenes, polyhedral boranes, and related structures. Chemical Reviews, 105, 3613–3642. DOI: 10.1021/cr0300892.CrossRefGoogle Scholar
  6. Chen, Z., Wannere, C. S., Corminboeuf, C., Puchta, R., & von Ragué Schleyer, P. (2005). Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chemical Reviews, 105, 3842–3888. DOI: 10.1021/cr030088+.CrossRefGoogle Scholar
  7. Cyrański, M. K., Krygowski, T. M., Wisiorowski, M., van Eikema Hommes, N. J. R., & von Ragué Schleyer, P. (1998). Global and local aromaticity in porphyrins: An analysis based on molecular geometries and nucleus-independent chemical shifts. Angewandte Chemie International Edition, 37, 177–180. DOI: 10.1002/(SICI)1521-3773(19980202)37:1/2<177::AID-ANIE177>3.0.CO;2-H.CrossRefGoogle Scholar
  8. Dahiya, R. (2008). Synthesis and biological activity of a cyclic hexapeptide from Dianthus superbus. Chemical Papers, 62, 527–535. DOI: 10.2478/s11696-008-0052-9.CrossRefGoogle Scholar
  9. Darensbourg, D. J., Phelps, A. L., Le Gall, N., & Jia, L. (2004). Mechanistic studies of the copolymerization reaction of aziridines and carbon monoxide to produce poly-β-peptoids. Journal of the American Chemical Society, 126, 13808–13815. DOI: 10.1021/ja046225h.CrossRefGoogle Scholar
  10. Ding, L., Ding, Y. Q., Teng, Q. W., & Wang, K. (2008). Electronic structures and spectroscopy of luminescent paraphenylenevinylene oligomers. Chinese Journal of Chemistry, 26, 97–100. DOI: 10.1002/cjoc.200890044.CrossRefGoogle Scholar
  11. Ding, L., Ding, Y. Q., Teng, Q. W., & Wang, K. (2007). The effect of substituents on the fluorescent properties of paraphenylenevinylene. Journal of the Chinese Chemical Society, 54, 853–860.Google Scholar
  12. Ding, Y., Gao, P., Qin, L., & Teng, Q. (2009). Investigation on stabilities and spectroscopy of C80O2 based on C80(D 5d) using density function theory. International Journal of Quantum Chemistry, 109, 693–700. DOI: 10.1002/qua.21885.CrossRefGoogle Scholar
  13. Dyakov, Yu. A., Mebel, A. M., Lin, S. H., Lee, Y. T., & Ni, C.-K. (2006). Acetylene elimination in photodissociation of neutral azulene and its cation: an ab initio and RRKM study. Journal of the Chinese Chemical Society, 53, 161–168.Google Scholar
  14. Frackenpohl, J., Arvidsson, P. I., Schreiber, J. V., & Seebach, D. (2001). The outstanding biological stability of β- and γ-peptides toward proteolytic enzymes: an in vitro investigation with fifteen peptidases. ChemBioChem, 2, 445–455. DOI: 10.1002/1439-7633(20010601)2:6<445::AIDCBIC445> 3.0.CO;2-R.CrossRefGoogle Scholar
  15. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A, Vreven, T., Jr., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J. A. (2003). Gaussian 03, Revision B.01 [computer software]. Pittsburgh, PA, USA: Gaussian, Inc.Google Scholar
  16. Geerlings, P., De Proft, F., & Langenaeker, W. (2003). Conceptual density functional theory. Chemical Reviews, 103, 1793–1874. DOI: 10.1021/cr990029p.CrossRefGoogle Scholar
  17. Gellman, S. H. (1998). Foldamers: a manifesto. Accounts of Chemical Research, 31, 173–180. DOI: 10.1021/ar960298r.CrossRefGoogle Scholar
  18. Gill, P. M. W., Johnson, B. G., & Pople, J. A. (1993). A standard grid for density functional calculations. Chemical Physics Letters, 209, 506–512. DOI: 10.1016/0009-2614(93)80125-9.CrossRefGoogle Scholar
  19. Golabczak, J., Strakowska, J., & Konstantynowicz, A. (2005). Dynamics of evening primrose protein hydrolysis. Chemical Papers, 59, 409–412.Google Scholar
  20. Greenwood, N. N., & Earnshaw, A. (1997). Chemistry of the elements (2nd ed.). Oxford, UK: Butterworth-Heinemann.Google Scholar
  21. Guichard, G. (2000). Solid-phase synthesis of pseudopeptides and oligomeric peptide backbone mimetics. In S. A. Kates, & F. Albericio (Eds.), Solid-phase synthesis: a practical guide (pp. 649–704). New York, NY, USA: Marcel Dekker.Google Scholar
  22. Hamper, B. C., Kolodziej, S. A., Scates, A. M., Smith, R. G., & Cortez, E. (1998). Solid phase synthesis of β-peptoids: Nsubstituted β-aminopropionic acid oligomers. Journal of Organic Chemistry, 63, 708–718 DOI: 10.1021/jo971675w.CrossRefGoogle Scholar
  23. Janjić, G. V., Milčić, M. K., & Zarić, S. D. (2009). Intramolecular MLOH/π and MLNH/π interactions in crystal structures of metal complexes. Chemical Papers, 63, 298–305. DOI: 10.2478/s11696-009-0020-z.CrossRefGoogle Scholar
  24. Kirshenbaum, K., Zuckermann, R. N., & Dill, K. A. (1999). Designing polymers that mimic biomolecules. Current Opinion in Structural Biology, 9, 530–535. DOI: 10.1016/S0959-440x(99)80075-x.CrossRefGoogle Scholar
  25. Koleva, B. B., Kolev, T. M., & Todorov, S. (2007). Structural and spectroscopic analysis of dipeptide l-methionyl-glycine and its hydrochloride. Chemical Papers, 61, 490–496. DOI: 10.2478/s11696-007-0067-7.CrossRefGoogle Scholar
  26. Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789. DOI: 10.1103/PhysRevB.37.785.CrossRefGoogle Scholar
  27. Lu, X., & Chen, Z. (2005). Curved pi-conjugation, aromaticity, and the related chemistry of small fullerenes (<C60) and single-walled carbon nanotubes. Chemical Reviews, 105, 3643–3696. DOI: 10.1021/cr030093d.CrossRefGoogle Scholar
  28. Martinek, T. A., & Fulop, F. (2003). Side-chain control of β-peptide secondary structures. European Journal of Biochemistry, 270, 3657–3666. DOI: 10.1046/j.1432-1033.2003.03756.x.CrossRefGoogle Scholar
  29. Mejías, X., Feliu, L., Planas, M., & Bardají, E. (2006). Synthesis of nucleobase-functionalized β-peptoids and β-peptoid hybrids. Tetrahedron Letters, 47, 8069–8071 DOI: 10.1016/j.tetlet.2006.09.057CrossRefGoogle Scholar
  30. Nozaki, K. (2006). Theoretical studies on photophysical properties and mechanism of phosphorescence in [fac-Ir(2-phenylpyridine) 3]. Journal of the Chinese Chemical Society, 53, 101–112.Google Scholar
  31. Parr, R. G., & Yang, W. (1989). Density-functional theory of atoms and molecules. New York, NY, USA: Oxford University Press.Google Scholar
  32. Patchkovskii, S., & Thiel, W. (2000). Nucleus-independent chemical shifts from semiempirical calculations. Journal of Molecular Modeling, 6, 67–75. DOI: 10.1007/PL00010736.CrossRefGoogle Scholar
  33. Price, J. L., Horne, W. S., & Gellman, S. H. (2007). Discrete heterogeneous quaternary structure formed by α/β-peptide foldamers and α-peptides. Journal of the American Chemical Society, 129, 6376–637 DOI: 10.1021/ja071203r.CrossRefGoogle Scholar
  34. Qi, L., Teng, Q., Wu, S., & Liu, Z. (2005). Molecular recognition and “on-off” switching of 30-crown-10 to biological polar guest molecules. Chemical Journal of Chinese Universities, 26, 1909–1912.Google Scholar
  35. Ren, X., Miao, Y., Li, N., & Wu, S. (2009). Theoretical binding affinities and spectroscopy of complexes formed by cyclobis(paraquat-p-anthracene) with amino acids. Indian Journal of Chemistry, 48A, 623–630.Google Scholar
  36. Ridley, J., & Zerner, M. C. (1973). An intermediate neglect of differential overlap technique for spectroscopy: pyrrole and the azines. Theoretica Chimica Acta, 32, 111–134. DOI: 10.1007/BF00528484.CrossRefGoogle Scholar
  37. Roy, O., Faure, S., Thery, V., Didierjean, C., & Taillefumier, C. (2008). Cyclic β-peptoids. Organic Letters, 10, 921–924. DOI: 10.1021/ol7030763.CrossRefGoogle Scholar
  38. Schreiber, J. V., Frackenpohl, J., Moser, F., Fleischmann, T., Kohler, H. P. E., & Seebach, D. (2002). On the biodegradation of beta-peptides. ChemBioChem, 3, 424–432. DOI: 10.1002/1439-7633 (20020503)3:5<424::AID-CBIC424>3.0.CO;2-0.CrossRefGoogle Scholar
  39. Seebach, D., Hook, D. F., & Glättli, A. (2006). Helices and other secondary structures of β- and γ-peptides. Biopolymers: Peptide Science, 84, 23–37. DOI: 10.1002/bip.20391.CrossRefGoogle Scholar
  40. Smieško, M., & Remko, M. (2005). Structure and gas-phase stability of Zn(II)-molecule complexes. Chemical Papers, 59, 310–315.Google Scholar
  41. Su, N., Guo, Q., & Wu, S. (2008). Stability and spectroscopic studies on oxygenated armchair SWCNTs. Indian Journal of Chemistry, 47A, 1473–1479.Google Scholar
  42. Sun, H., Teng, Q., Wu, S., & Wang, Z. (2006). Investigations on UV and IR spectra for C80On (n = 1, 2). Indian Journal of Chemistry, 45A, 1345–1350.Google Scholar
  43. Sun, H., Wu, S., & Ren, X. (2008a). Theoretical studies on stabilities and spectroscopy of C84O. Journal of Molecular Structure: THEOCHEM, 855, 6–12. DOI: 10.1016/j.theochem.2007.12.043CrossRefGoogle Scholar
  44. Sun, H., Yun, X., Wu, S., & Teng, Q. (2008b). Theoretical studies on stabilities, 13C and 3He NMR spectroscopy of C84O derived from C84(D 2d). Journal of Molecular Structure: THEOCHEM, 868, 71–77. DOI: 10.1016/j.theochem.2008.08.007.CrossRefGoogle Scholar
  45. Suresh, S. J., & Naik, V. M. (2000). Hydrogen bond thermodynamic properties of water from dielectric constant data. Journal of Chemical Physics, 113, 9727–9732. DOI: 10.1063/1.1320822CrossRefGoogle Scholar
  46. Teng, Q. W., & Wu, S. (2006). Investigation on UV and IR spectra of C74(BN)2. Chinese Journal of Chemistry, 24, 419–422. DOI: 10.1002/cjoc.200690080.CrossRefGoogle Scholar
  47. Teng, Q., & Wu, S. (2005a). Stability and electronic spectroscopy of isomers for C74Si2. Journal of Molecular Structure: THEOCHEM, 756, 103–107. DOI: 10.1016/j.theochem.2005.08.016.CrossRefGoogle Scholar
  48. Teng, Q., & Wu, S. (2005b). An INDO study on electronic structures and spectra of C79H2. Journal of Molecular Structure: THEOCHEM, 719, 47–51. DOI: 10.1016/j.theochem.2004.11.045.CrossRefGoogle Scholar
  49. Teng, Q., & Wu, S. (2005c). Electronic structures and spectra for triepoxides of fullerene C78O3. International Journal of Quantum Chemistry, 104, 279–285. DOI: 10.1002/qua.20604.CrossRefGoogle Scholar
  50. von Ragué Schleyer, P., Maerker, C., Dransfeld, A., Jiao, H., & van Eikema Hommes, N. J. R. (1996). Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. Journal of the American Chemical Society, 118, 6317–6318. DOI: 10.1021/ja960582d.CrossRefGoogle Scholar
  51. Wang, G. W., Saunders, M., Khong, A., & Cross, R. J. (2000). A new method for separating the isomeric C84 fullerenes. Journal of the American Chemical Society, 122, 3216–3217. DOI: 10.1021/ja994270x.CrossRefGoogle Scholar
  52. Wang, Z., & Wu, S. (2007). Binding affinities and spectra of complexes formed by dehydrotetrapyrido[20]annulene and small molecules. Chemical Papers, 61, 313–320. DOI: 10.2478/s11696-007-0039-y.CrossRefGoogle Scholar
  53. Wolinski, K., Hinton, J., & Pulay, P. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112, 8251–8260. DOI: 10.1021/ja00179 a005.CrossRefGoogle Scholar
  54. Wu, S., & Teng, Q. (2006). Studies on equilibrium geometries and electronic spectra for C78O4. International Journal of Quantum Chemistry, 106, 526–532. DOI: 10.1002/qua.20761.CrossRefGoogle Scholar
  55. Wu, S., Teng, Q. W., & Chen, S. C. (2007). Semi-empirical and DFT studies on structures and spectra for C78(CH2)2. Chinese Journal of Chemistry, 25, 149–153. DOI: 10.1002/cjoc.200790030.CrossRefGoogle Scholar
  56. Yan, C., Su, N., & Wu, S. (2007). The structure and spectra of H-bonded complexes formed by 2-pyridone. Russian Journal of Physical Chemistry A, 81, 1980–1985. DOI: 10.1134/S0036024407120138.CrossRefGoogle Scholar
  57. Yu, X., Yi, B., Yu, W., & Wang, X. (2008). DFT-based quantum theory QSPR studies of molar heat capacity and molar polarization of vinyl polymers. Chemical Papers, 62, 623–629. DOI: 10.2478/s11696-008-0066-3.CrossRefGoogle Scholar
  58. Zhang, W., Wu, S., & Wen, X. (2007). Theoretical exploration on stable geometries of C78O6 based on C 2v–C78. Indian Journal of Chemistry, 46A, 1911–1916.Google Scholar
  59. Zhang, Y., Li, T., & Teng, Q. W. (2008). Stabilities and spectroscopy of hydrogen bonding complexes formed by 2,4-bis(acrylamido)pyrimidines. Chinese Journal of Chemistry, 26, 1567–1572. DOI: 10.1002/cjoc.200890283.CrossRefGoogle Scholar
  60. Zhao, H., Zhou, J., Hu, L., & Teng, Q. (2009). Theoretical studies on electronic structures and NMR spectra of oligo(4 vinylpyridine). Chinese Journal of Chemistry, 27, 1687–1691. DOI: 10.1002/cjoc.200990283.CrossRefGoogle Scholar
  61. Zhu, L., Sun, Y., Wang, Q., & Wu, S. (2009). Progress in binding affinities of metal porphyrins to heterocycles and DNA. Chinese Journal of Organic Chemistry, 29, 1700–1707.Google Scholar
  62. Zhu, L. L., Teng, Q.W., & Wu, S. (2006). Theoretical studies on hydrogen-bonding complexes of melamine and cyclotrione. Chemical Journal of Chinese Universities, 27, 680–683.Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2010

Authors and Affiliations

  1. 1.Department of ChemistryZhejiang UniversityHangzhouChina
  2. 2.Department of Chemical Engineering and BioengineeringZhejiang UniversityHangzhouChina

Personalised recommendations