Chemical Papers

, Volume 64, Issue 4, pp 482–490 | Cite as

In vitro bioactivity and crystallization behavior of bioactive glass in the system SiO2-CaO-Al2O3-P2O5-Na2O-MgO-CaF2

  • Melek ErolEmail author
Original Paper


In this study, bioactivity of glass in the system SiO2-CaO-Al2O3-P2O5-Na2O-MgO-CaF2 was investigated. For this purpose, a glass sample was prepared by the traditional melting method. Crystallization behavior of bioactive glass was also investigated using differential thermal analyses. The Avrami constant of bioactive glass sample calculated according to the Ozawa equation was 3.72 ± 0.4, which indicates bulk crystallization. Using the Matusita-Sakka and the Kissinger equations, activation energy of crystal growth was determined as (394 ± 17) kJ mol−1 and (373 ± 12) kJ mol−1, respectively. These results indicate that the crystallization activation energy data of bioactive glass obtained in this study are accurate and reliable. Bioactivity of the resultant glass sample was analyzed by immersion in simulated body fluid. Scanning electron microscopy, thin film X-ray diffraction, ultraviolet spectroscopy and inductively coupled plasma techniques were used to monitor changes in the glass surface and the simulated body fluid composition. The results revealed that a hydroxyapatite layer was formed on the glass surface after 21 days of immersion in SBF. Formation of the hydroxyapatite layer confirmed the bioactivity of the glass in the system SiO2-CaO-Al2O3-P2O5-Na2O-MgO-CaF2. In addition, physical and mechanical properties of the sample were measured to determine changes in the properties with the immersion time. The results show that bioactive glass maintained its strength during the immersion in a simulated body fluid solution.


bioactive glass crystallization kinetics bioactivity hardness porosity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel-Rahim, M. A., Ibrahim, M. M., Dongol, M., & Gaber, A. (1992) Differential scanning calorimetric study of Bi10Se80In10 chalcogenide glass. Journal of Materials Science, 27, 4685–4689. DOI: 10.1007/BF01166006.CrossRefGoogle Scholar
  2. Agathopoulos, S., Tulyaganov, D. U., Valério, P., & Ferreira, J. M. F. (2005) A new model formulation of the SiO2-Al2O3-B2O3-MgO-CaO-Na2O-F glass-ceramics. Biomaterials, 26, 2255–2264. DOI: 10.1016/j.biomaterials.2004.07.030.CrossRefGoogle Scholar
  3. Agathopoulos, S., Tulyaganov, D. U., Ventura, J. M. G., Kannan, S., Karakassides, M. A., & Ferreira, J. M. F. (2006) Formation of hydroxyapatite onto glasses of the CaO-MgO-SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. Biomaterials, 27, 1832–1840. DOI: 10.1016/j.biomaterials.2005.10.033.CrossRefGoogle Scholar
  4. Aina, V., Malavasi, G., Fiorio Pla, A., Munaron, L., & Morterra, C. (2009) Zinc-containing bioactive glasses: Surface reactivity and behaviour towards endothelial cells. Acta Biomaterialia, 5, 1211–1222. DOI: 10.1016/j.actbio.2008.10.020.CrossRefGoogle Scholar
  5. Arstila, H., Vedel, E., Hupa, L., & Hupa, M. (2007) Factors affecting crystallization of bioactive glasses. Journal of the European Ceramic Society, 27, 1543–1546. DOI: 10.1016/j.jeurceramsoc.2006.04.017.CrossRefGoogle Scholar
  6. Barrios de Arenas, I., Schattner, C., & Vásquez, M. (2006) Bioactivity and mechanical properties of Na2O.CaO.SiO2.P2O5 modified glasses. Ceramics International, 32, 515–520. DOI: 10.1016/j.ceramint.2005.04.003.CrossRefGoogle Scholar
  7. Clupper, D. C., & Hench, L. L. (2003) Crystallization kinetics of tape cast bioactive glass 45S5. Journal of Non-Crystalline Solids, 318, 43–48. DOI: 10.1016/S0022-3093(02)01857-4.CrossRefGoogle Scholar
  8. Dietrich, E., Oudadesse, H., Lucas-Girot, A., Le Gal, Y., Jeanne, S., & Cathelineau, G. (2008) Effects of Mg and Zn on the surface of doped melt-derived glass for biomaterials applications. Applied Surface Science, 255, 391–395. DOI: 10.1016/j.apsusc.2008.06.094.CrossRefGoogle Scholar
  9. Dubok, V. A. (2000) Bioceramics - yesterday, today, tomorrow. Powder Metallurgy and Metal Ceramics, 39, 381–394. DOI: 10.1023/A:1026617607548.CrossRefGoogle Scholar
  10. El-Kheshen, A. A., Khaliafa, F. A., Saad, E. A., & Elwan, R. L. (2008) Effect of Al2O3 addition on bioactivity, thermal and mechanical properties of some bioactive glasses. Ceramics International, 34, 1667–1673. DOI: 10.1016/j.ceramint.2007.05.016.CrossRefGoogle Scholar
  11. Goel, A., Shaaban, E. R., Melo, F. C. L., Ribeiro, M. J., & Ferreira, J. M. F. (2007) Non-isothermal crystallization kinetic studies on MgO-Al2O3-SiO2-TiO2 glass. Journal of Non-Crystalline Solids, 353, 2383–2391. DOI: 10.1016/j.jnoncrysol.2007.04.008.CrossRefGoogle Scholar
  12. Hench, L. L. (1991) Bioceramics: From concept to clinic. Journal of the American Ceramic Society, 74, 1487–1510. DOI: 10.1111/j.1151-2916.1991.tb07132.x.CrossRefGoogle Scholar
  13. Hench, L. L., & Andersson, Ö. (1993) Bioactive glasses. n: L. L. Hench & J. Wilson (Eds.), An introduction to bioceramics (Advanced Series in Ceramics, Vol. 1, pp. 41–62). Singapore. Malaysia: World Scientific Publishing Co.Google Scholar
  14. Hench, L. L., & Paschall, H. A. (1973) Direct chemical bonding between bioactive glass-ceramic materials and bone. Journal of Biomedical Materials Research, 7, 25–42. DOI: 10.1002/jbm.820070304.CrossRefGoogle Scholar
  15. Hench, L. L., Splinter, R. J., Allen, W. C., & Greenlee, T. K. (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 5, 117–141. DOI: 10.1002/jbm.820050611CrossRefGoogle Scholar
  16. Kamitakahara, M., Ohtsuki, C., Inada, H., Tanihara, M., & Miyazaki, T. (2006) Effect of ZnO addition on bioactive CaO-SiO2-P2O5-CaF2 glass-ceramics containing apatite and wollastonite. Acta Biomaterialia, 2, 467–471. DOI: 10.1016/j.actbio.2006.03.001.CrossRefGoogle Scholar
  17. Kim, H.-M., Miyaji, F., Kokubo, T., Ohtsuki, C., & Nakamura, T. (1995) Bioactivity of Na2O-CaO-SiO2 glasses. Journal of the American Ceramic Society, 78, 2405–2411. DOI: 10.1111/j.1151-2916.1995.tb08677.CrossRefGoogle Scholar
  18. Kingery, W. D., Bowen, H. K., & Uhlmann, D. R. (1976) Introduction to ceramics (2nd Ed.). New York, NY, USA: Wiley.Google Scholar
  19. Kissinger, H. E. (1956) Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards, 57, 217–221.Google Scholar
  20. Kokubo, T., Ito, S., Shigematsu, M., Sakka, S., & Yamamuro, T. (1985) Mechanical properties of a new type of apatite-containing glass-ceramic for prosthetic application. Journal of Materials Science, 20, 2001–2004. DOI: 10.1007/BF01112282.CrossRefGoogle Scholar
  21. Kokubo, T., Shigematsu, M., Nagashima, Y., Tashiro, M., Nakamura, T., Yamamuro, T., & Higashi, S. (1982) Apatite- and wollastonite-containing glass-ceramics for prosthetic application. Bulletin of the Institute for Chemical Research, 60, 260–268.Google Scholar
  22. Liu, Y., Xiang, Q., Tan, Y., & Sheng, X. (2008) Nucleation and growth of needle-like fluorapatite crystals in bioactive glass-ceramics. Journal of Non-Crystalline Solids, 354, 938–944. DOI: 10.1016/j.jnoncrysol.2007.07.025.CrossRefGoogle Scholar
  23. Matusita, K., & Sakka, S. (1980) Kinetic study on crystallization of glass by differential thermal analysis-criterion on application of Kissinger plot. Journal of Non-Crystalline Solids, 38-39, 741–746. DOI: 10.1016/0022-3093(80)90525-6.CrossRefGoogle Scholar
  24. O’Donnell, M. D., Watts, S. J., Law, R. V., & Hill, R. G. (2008) Effect of P2O5 content in two series of soda lime phosphosilicate glasses on structure and properties - Part II: Physical properties. Journal of Non-Crystalline Solids, 354, 3561–3566. DOI: 10.1016/j.jnoncrysol.2008.03.035.CrossRefGoogle Scholar
  25. Ozawa, T. (1971) Kinetics of non-isothermal crystallization. Polymer, 12, 150–158. DOI: 10.1016/0032-3861(71)90041-3.CrossRefGoogle Scholar
  26. Palou, M., Kuzielová, E., Vitkoviè, M., & Noaman, M. S. M. (2009) Mechanism and kinetics of glass-ceramics formation in the Li2O-SiO2-CaO-P2O5-CaF2 system. Central European Journal of Chemistry, 7, 228–233. DOI: 10.2478/s11532-009-0002-6.CrossRefGoogle Scholar
  27. Park, H. C., Lee, S. H., Ryu, B. K., Son, M. M., & Yasui, I. (1996) Nucleation and crystallization kinetics of CaOAl2O3-2SiO2 in powdered anorthite glass. Journal of Materials Science, 31, 4249–4253. DOI: 10.1007/BF00356446.CrossRefGoogle Scholar
  28. Pereira, D., Cachinho, S., Ferro, M. C., & Fernandes, M. H. V. (2004) Surface behaviour of high MgO-containing glasses of the Si-Ca-P-Mg system in a synthetic physiological fluid. Journal of the European Ceramic Society, 24, 3693–3701. DOI: 10.1016/j.jeurceramsoc.2004.02.006.CrossRefGoogle Scholar
  29. Ragel, C. V., Vallet-Regí, M., & Rodríguez-Lorenzo, L. M. (2002) Preparation and in vitro bioactivity of hydroxyapatite/solgel glass biphasic material. Biomaterials, 23, 1865–1872. DOI: 10.1016/S0142-9612(01)00313-1.CrossRefGoogle Scholar
  30. Rámila, A., & Vallet-Regí, M. (2001) Static and dynamic in vitro study of a sol-gel glass bioactivity. Biomaterials, 22, 2301–2306. DOI: 10.1016/S0142-9612(00)00419-1.CrossRefGoogle Scholar
  31. Salman, S. M., Salama, S. N., Darwish, H., & Abo-Mosallam, H. A. (2009) In vitro bioactivity of glass-ceramics of the CaMgSi2O6-CaSiO3-Ca5(PO4)3F-Na2SiO3 system with TiO2 or ZnO additives. Ceramics International, 35, 1083–1093. DOI: 10.1016/j.ceramint.2008.04.025.CrossRefGoogle Scholar
  32. Saranti, A., Koutselas, I., & Karakassides, M. A. (2006) Bioactive glasses in the system CaO-B2O3-P2O5: Preparation, structural study and in vitro evaluation. Journal of Non-Crystalline Solids, 352, 390–398. DOI: 10.1016/j.jnoncrysol. 2006.01.042.CrossRefGoogle Scholar
  33. Sung, Y.-M. (2001) Nonisothermal phase formation kinetics in sol-gel-derived strontium bismuth tantalite. Journal of Materials Research, 16, 2039–2044. DOI: 10.1557/JMR.2001.0279.CrossRefGoogle Scholar
  34. Xin, R., Leng, Y., Chen, J., & Zhang, Q. (2005) A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo. Biomaterials, 26, 6477–6486. DOI: 10.1016/j.biomaterials.2005.04.028.CrossRefGoogle Scholar
  35. Xu, X. J., Ray, C. S., & Day, D. E. (1991) Nucleation and crystallization of Na2O · 2CaO · 3SiO2 glass by differential thermal analysis. Journal of the American Ceramic Society, 74, 909–914. DOI: 10.1111/j.1151-2916.1991.tb04321.CrossRefGoogle Scholar
  36. Yamamuro, T. (1995). Bioceramics. New York, NY, USA: Elsevier.Google Scholar
  37. Yilmaz, S., & Gunay, V. (2007) Crystallization kinetics of SiO2-MgO-3CaO-P2O5-Al2O3-ZrO2 glass. Materials Science-Poland, 25, 609–617.Google Scholar
  38. Žnidaršič-Pongrac, V., & Kolar, D. (1991) The crystallization of diabese glass. Journal of Materials Science, 26, 2490–2494. DOI: 10.1007/BF01130200.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2010

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Chemical & Metallurgical Engineering FacultyIstanbul Technical UniversityMaslak, IstanbulTurkey

Personalised recommendations