Advertisement

Chemical Papers

, Volume 64, Issue 4, pp 523–527 | Cite as

Visual spectroscopy detection of triclosan

  • Olexander I. KysliakEmail author
  • Natalia I. Smyk
Short Communication

Abstract

The azo coupling reaction with 2-aminonaphthalene-4,8-disulfonic acid (I) was used to develop a new cheap and rapid method of triclosan (II) determination in hygiene products. The calibration graph was linear in the range of 2.0−100 × 10−6 mol L−1. The detection limit was 2.0 μmol L−1.

Keywords

triclosan spectrophotometry hygiene products azo coupling reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agronomov, A. E. (1990). Chosen chapters of organic chemistry. Moscow, Russia: Khimiya. (in Russian)Google Scholar
  2. Amiri, M., Shahrokhian, S., Psillakis, E., & Marken, F. (2007). Electrostatic accumulation and determination of triclosan in ultrathin carbon nanoparticle composite film electrodes. Analytica Chimica Acta, 593, 117–122. DOI: 10.1016/j.aca.2007.04.042.CrossRefGoogle Scholar
  3. Canosa, P., Pérez-Palacios, D., Garrido-López, A., Tena, M. T., Rodríguez, I., Rubí, E., & Cela, R. (2007a). Pressurized liquid extraction with in-cell clean-up followed by gas chromatography-tandem mass spectrometry for the selective determination of parabens and triclosan in indoor dust. Journal of Chromatography A, 1161, 105–112. DOI: 10.1016/j.chroma.2007.05.089.CrossRefGoogle Scholar
  4. Canosa, P., Rodríguez, I., Rubí, E., & Cela, R. (2007b). Determination of parabens and triclosan in indoor dust using matrix solid-phase dispersion and gas chromatography with tandem mass spectrometry. Analytical Chemistry, 79, 1675–1681. DOI: 10.1021/ac061896e.CrossRefGoogle Scholar
  5. Canosa, P., Rodríguez, I., Rubí, E., Ramil, M., & Cela, R. (2008). Simplified sample preparation method for triclosan and methyltriclosan determination in biota and foodstuff samples. Journal of Chromatography A, 1188, 132–139. DOI: 10.1016/j.chroma.2008.02.064.CrossRefGoogle Scholar
  6. Chu, S., & Metcalfe, C. D. (2007). Simultaneous determination of triclocarban and triclosan in municipal biosolids by liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 1164, 212–218. DOI: 10.1016/j.chroma.2007.07.024.CrossRefGoogle Scholar
  7. Gatidou, G., Thomaidis, N. S., Stasinakis, A. S., & Lekkas, T. D. (2007). Simultaneous determination of the endocrine disrupting compounds nonylphenol, nonylphenol ethoxylates, triclosan and bisphenol A in wastewater and sewage sludge by gas chromatography-mass spectrometry. Journal of Chromatography A, 1138, 32–41. DOI: 10.1016/j.chroma.2006.10.037.CrossRefGoogle Scholar
  8. Lu, H., Ma, H., & Tao, G. (2009). Spectrophotometric determination of triclosan in personal care products. Spectrochimica Acta Part A, 73, 854–857. DOI: 10.1016/j.saa.2009.04.007.CrossRefGoogle Scholar
  9. Lur’e, Y. Y. (1989). Handbook of analytical chemistry. Moscow, Russia: Khimiya. (in Russian)Google Scholar
  10. Morales, S., Canosa, P., Rodríguez, I., Rubí, E., & Cela, R. (2005). Microwave assisted extraction followed by gas chromatography with tandem mass spectrometry for the determination of triclosan and two related chlorophenols in sludge and sediments. Journal of Chromatography A, 1082, 128–135. DOI: 10.1016/j.chroma.2005.05.059.CrossRefGoogle Scholar
  11. Quintana, J. B., & Reemtsma, T. (2004). Sensitive determination of acidic drugs and triclosan in surface and wastewater by ion-pair reverse-phase liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 18, 765–774. DOI: 10.1002/rcm.1403.CrossRefGoogle Scholar
  12. Rule, K. L., Ebbett, V. R., & Vikesland, P. J. (2005). Formation of chloroform and chlorinated organics by free-chlorinemediated oxidation of triclosan. Environmental Science & Technology, 39, 3176–3185. DOI: 10.1021/es048943+.CrossRefGoogle Scholar
  13. Serjeant, E. P., & Dempsey, B. (1979). Ionisation constants of organic acids in aqueous solution. Oxford, UK: Pergamon Press.Google Scholar
  14. Song, S., Song, Q. J., & Chen, Z. (2007). Online phototransformation-flow injection chemiluminescence determination of triclosan. Analytical and Bioanalytical Chemistry, 387, 2917–2922. DOI: 10.1007/s00216-007-1130-5.CrossRefGoogle Scholar
  15. Whitlock, L. R., Siggia, S., & Smola, J. E. (1972). Spectrophotometric analysis of phenols and of sulfonates by formation of an azo dye. Analytical Chemistry, 44, 532–536. DOI: 10.1021/ac60311a021.CrossRefGoogle Scholar
  16. Zaporozhets, O. A., Nadzhafova, O. Y., Verba, V. V., Sukhan, V. V., Dolenko, S. A., & Keda, T. Y. (1998). Solid-phase reagents for the determination of anionic surfactants in water. Analyst, 123, 1583–1586. DOI: 10.1039/a708811f.CrossRefGoogle Scholar
  17. Zaporozhets, O. A., Zin’ko, L. S., & Kachan, I. A. (2007). Solidphase-spectrophotometric and test determination of simultaneously present phosphorus forms (phosphorus speciation) in water. Journal of Analytical Chemistry, 62, 1146–1150. DOI: 10.1134/S1061934807120088.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2010

Authors and Affiliations

  1. 1.Department of Analytical ChemistryTaras Shevchenko National University of KyivKyivUkraine

Personalised recommendations