Chemical Papers

, Volume 64, Issue 4, pp 424–428 | Cite as

Flow injection spectrofluorimetric determination of iron(III) in water using salicylic acid

  • Adem AsanEmail author
  • Muberra Andac
  • Ibrahim Isildak
Original Paper


A simple and fast flow injection fluorescence quenching method for the determination of iron in water has been developed. Fluorimetric determination is based on the measurement of the quenching effect of iron on salicylic acid fluorescence. An emission peak of salicylic acid in aqueous solution occurs at 409 nm with excitation at 299 nm. The carrier solution used was 2 × 10−6 mol L−1 salicylic acid in 0.1 mol L−1 NH 4 + /NH3 buffer solution at pH 8.5. Linear calibration was obtained for 5–100 μg L−1 iron(III) and the relative standard deviation was 1.25 % (n = 5) for a 20 μL injection volume iron(III). The limit of detection was 0.3 μg L−1 and the sampling rate was 60 h−1. The effect of interferences from various metals and anions commonly present in water was also studied. The method was successfully applied to the determination of low levels of iron in real samples (river, sea, and spring waters).


flow injection analysis iron(III) fluorescence quenching salicylic acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andac, M., Asan, A., & Isildak, I. (2009). A simple flow injection spectrophotometric determination method for iron(III) based on O-acetylsalicylhydroxamic acid complexation. Chemical Papers, 63, 268–273. DOI: 10.2478/s11696-009-0024-8.CrossRefGoogle Scholar
  2. Asan, A., Andac, M., & Isildak, I. (2003). Flow-injection spectrophotometric determination of nanogram levels of iron(III) with N,N-dimethylformamide. Analytical Sciences, 19, 1033–1036. DOI: 10.2116/analsci.19.1033-1036.CrossRefGoogle Scholar
  3. Asan, A., Andac, M., Isildak, I., & Tinkilic, N. (2008). Flow injection spectrophotometric determination of iron(III) using diphenylamine-4-sulfonic acid sodium salt. Chemical Papers, 62, 345–349. DOI: 10.2478/s11696-008-0048-5.CrossRefGoogle Scholar
  4. Bagheri, H., Gholami, A., & Najafi, A. (2000). Simultaneous preconcentration and speciation of iron(II) and iron(III) in water samples by 2-mercaptobenzimidazole-silica gel sorbent and flow injection analysis system. Analytica Chimica Acta, 424, 233–242. DOI: 10.1016/S0003-2670(00)01151-X.CrossRefGoogle Scholar
  5. Cha, K.-W., & Park, C.-I. (1996). Spectrofluorimetric determination of iron(III) with 2-pyridinecarbaldhyde-5-nitropyridylhydrazone in the presence of hexadecyltrimethylammonium bromide surfactant. Talanta, 43, 1335–1341. DOI: 10.1016/0039-9140(96)01889-9.CrossRefGoogle Scholar
  6. Cha, K.-W., & Park, K.-W. (1998). Determination of iron(III) with salicylic acid by the fluorescence quenching method. Talanta, 46, 1567–1571. DOI: 10.1016/S0039-9140(98)00032-0.CrossRefGoogle Scholar
  7. Currie, L. A. (1995). Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC recommendations 1995). Pure and Applied Chemistry, 67, 1699–1723.CrossRefGoogle Scholar
  8. Ragos, G. C., Demertzis, M. A., & Issopoulos, P. B. (1998). A high-sensitive spectrofluorimetric method for the determination of micromolar concentrations of iron(III) in bovine liver with 4-hydroxyquinoline. II Farmaco, 53, 611–616. DOI: 10.1016/S0014-827X(98)00070-6.CrossRefGoogle Scholar
  9. Giokas, D. L., Paleologos, E. K., & Karayannis, M. I. (2002). Speciation of Fe(II) and Fe(III) by the modified ferrozine method, FIA-spectrophotometry, and flame AAS after cloudpoint extraction. Analytical and Bioanalytical Chemistry, 373, 237–243. DOI: 10.1007/s00216-002-1326-7.CrossRefGoogle Scholar
  10. Işıldak, I., Asan, A., & Andaç, M. (1999). Spectrophotometric determination of copper(II) at low μg l−1 levels using cationexchange microcolumn in flow-injection. Talanta, 48, 219–224. DOI: 10.1016/S0039-9140(98)00241-0CrossRefGoogle Scholar
  11. Kawakubo, S., Natio, A., Fujihara, A., & Iwatsuki, M. (2004). Field determination of trace iron in fresh water samples by visual and spectrophotometric methods. Analytical Sciences, 20, 1159–1163. DOI: 10.2116/analsci.20.1159.CrossRefGoogle Scholar
  12. Ohno, S., Tanaka, M., Teshima, N., & Sakai, T. (2004). Successive determination of copper and iron by a flow injection-catalytic photometric method using a serial flow cell. Analytical Sciences, 20, 171–175. DOI: 10.2116/analsci.20.171.CrossRefGoogle Scholar
  13. Pascual-Reguera, M. I., Ortega-Carmona, I., & Molina-Díaz, A. (1997). Spectrophotometric determination of iron with ferrozine by flow-injection analysis. Talanta, 44, 1793–1801. DOI: 10.1016/S0039-9140(97)00050-7.CrossRefGoogle Scholar
  14. Pojanagaroon, T., Watanesk, S., Rattanaphani, V., & Liawrungrath, S. (2002). Reverse flow injection spectrophotometric determination of iron(III) using norfloxacin. Talanta, 58, 1293–1300. DOI: 10.1016/S0039-9140(02)00420-4.CrossRefGoogle Scholar
  15. Tamm, L. K., & Kalb, E. (1993). Microspectrofluorometry on supported planar membranes. In S. G. Schulman (Ed.), Molecular luminescence spectroscopy. Methods and applications: Part 3 (pp. 303). New York, NY, USA: Wiley.Google Scholar
  16. Tarafder, P. K., & Thakur, R. (2005). Surfactant-mediated extraction of iron and its spectrophotometric determination in rocks, minerals, soils, stream sediments and water samples. Microchemical Journal, 80, 39–43. DOI: 10.1016/j.microc.2004.09.004.CrossRefGoogle Scholar
  17. Tesfaldet, Z. O., van Staden, J. F., & Stefan, R. I. (2004). Sequential injection spectrophotometric determination of iron as Fe(II) in multi-vitamin preparations using 1,10-phenanthroline as complexing agent. Talanta, 64, 1189–1195. DOI: 10.1016/j.talanta.2004.02.044.CrossRefGoogle Scholar
  18. Teshima, N., Ayukawa, K., & Kawashima, T. (1996). Simultaneous flow injection determination of iron (III) and vanadium (V) and of iron (III) and chromium (VI) based on redox reactions. Talanta, 43, 1755–1760. DOI: 10.1016/0039-9140(96)01966-2.CrossRefGoogle Scholar
  19. Themelis, D. G., Tzanavaras, P. D., Kika, F. S., & Sofoniou, M. C. (2001). Flow-injection manifold for the simultaneous spectrophotometric determination of Fe(II) and Fe(III) using 2,2′-dipyridyl-2-pyridylhydrazone and a single-line double injection approach. Fresenius’ Journal of Analytical Chemistry, 371, 364–368. DOI: 10.1007/s002160100930CrossRefGoogle Scholar
  20. Udnan, Y., Jakmunee, J., Jayasavati, S., Christian, G. D., Synovec, R. E., & Grudpan, K. (2004). Cost-effective flow injection spectrophotometric assay of iron content in pharmaceutical preparations using salicylate reagent. Talanta, 64, 1237–1240. DOI: 10.1016/j.talanta.2004.03.067.CrossRefGoogle Scholar
  21. van Staden, J. F., & Kluever, L. G. (1998). Determination of total iron in ground waters and multivitamin tablets using a solid-phase reactor with tiron immobilised on amberlite ion-exchange resin in a flow injection system. Fresenius’ Journal of Analytical Chemistry, 362, 319–323. DOI: 10.1007/s002160051081.CrossRefGoogle Scholar
  22. Weeks, D. A., & Bruland, K. W. (2002). Improved method for shipboard determination of iron in seawater by flow injection analysis. Analytica Chimica Acta, 453, 21–32. DOI: 10.1016/S0003-2670(01)01480-5.CrossRefGoogle Scholar
  23. Yan, G.-F., Shi, G.-R., & Liu, Y.-M. (1992). Fluorimetric determination of iron with 5-(4-methylphenylazo)-8-aminoquinoline in the presence of surfactants. Analytica Chimica Acta, 264, 121–124. DOI: 10.1016/0003-2670(92)85305-P.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2010

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceOndokuz Mayis UniversityKurupelit-SamsunTurkey

Personalised recommendations