Advertisement

Chemical Papers

, Volume 64, Issue 4, pp 434–442 | Cite as

Antioxidant, antimicrobial, and tyrosinase inhibition activities of acetone extract of Ascophyllum nodosum

  • Jakeline Trejos JiménezEmail author
  • Shane O’Connell
  • Henry Lyons
  • Benjamin Bradley
  • Michael Hall
Original Paper

Abstract

The search for new antioxidants of natural origin derived from plants and seaweeds is still very important at present. In our study, the acetone extract of A. nodosum was investigated for its potential use as a natural antioxidant, natural feed additive with antibacterial activity and as a tyrosinase inhibitor. This study could be useful in the context of improved utilization of the A. nodosum extract in the food and cosmetics industry, being not only economically advantageous but also environmentally friendly. Extracts showed antioxidant activity with application of different methodologies: 1,1-diphenyl-2-picrilhydracil DPPH· radicals scavenging (39 %, 4 mg of freeze-dried sample), β-carotene-linoleic acid antioxidant assay (11 %, 4 mg of freeze-dried sample), O2· radicals scavenging activity (IC50 0.43 mg mL−1), OH· radicals scavenging activity (IC50 1.55 mg mL−1), and iron chelation ability (IC50 0.56 mg mL−1). The extract showed considerable antibacterial activity being more effective against gram-positive bacteria (Micrococcus luteus, Staphylococcus aureus) than against gram-negative bacteria (Escherichia coli, Enterococcus aerogenes). Results of tyrosinase assay for the acetone extract of Ascophyllum nodosum presented 65.6 % inhibition of tyrosinase activity at the IC50 value of 0.1 mg mL−1. The outcomes of our study support potential utilization of this brown seaweed as a source of natural antioxidants. Antioxidant activity of the studied seaweed can be apparently explained by the free radicals scavenging activity, particularly related to the mechanisms of O 2 · radicals scavenging activity, OH· radicals inactivation, and iron chelation ability.

Keywords

Ascophyllum nodosum antioxidant activity antimicrobial activity tyrosinase inhibition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, V. G., Pond, K. R., Saker, K. E., Fontenot, J. P., Bagley, C. P., Ivy, R. L., Evans, R. R., Schmidt, R. E., Fike, J. H., Zhang, X., Ayad, J. Y., Brown, C. P., Miller, M. F., Montgomery, J. L., Mahan, J., Wester, D. B., & Melton, C. (2001). Tasco: Influence of a brown seaweed on antioxidants in forages and livestock-A review. Journal of Animal Science, 79, E21–E31.Google Scholar
  2. Aruoma, O. I. (1994). Deoxyribose assay for detecting hydroxyl radicals. In L. Packer (Ed.), Methods in enzymology (Vol. 233, pp. 57–66). San Diego, CA, USA: Elsevier.Google Scholar
  3. Babu, B. H., Shylesh, B. S., & Padikkala, J. (2001). Antioxidant and hepatoprotective effect of Acanthus ilicifolius. Fitoterapia, 72, 272–277. DOI: 10.1016/S0367-326X(00)00300-2.CrossRefGoogle Scholar
  4. Baek, H. S., Rho, H. S., Yoo, J. W., Ahn, S. M., Lee, J. Y., Lee, J., Kim, M.-K., Kim, D. H., & Chang, I. S. (2008). The inhibitory effect of new hydroxamic acid derivatives on melanogenesis. Bulletin of the Korean Chemical Society, 29, 43–46.CrossRefGoogle Scholar
  5. Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods — a review. International Journal of Food Microbiology, 94, 223–253. DOI: 10.1016/j.ijfoodmicro.2004.03.022.CrossRefGoogle Scholar
  6. Chatterji, A. Dhargalkar, V. K., Sreekumar, P. K., Parameswaran, P. S., Rodrigues, R., & Kotnala, S. (2004). Antiinfluenza activity in the Indian seaweeds — A preliminary investigation. Dona Paula, Goa, India: National Institute of Oceanography.Google Scholar
  7. Chen, Y., Cai, L., Zhao, C., Xu, H.-c., Cao, C.-y., Liu, Y., Jia, L., Yin, H.-X., Chen, C., & Zhang, H. (2008). Spectroscopic, stability and radical-scavenging properties of a novel pigment from gardenia. Food Chemistry, 109, 269–277. DOI: 10.1016/j.foodchem.2007.10.023.CrossRefGoogle Scholar
  8. Chew, Y. L., Lim, Y. Y., Omar, M., & Khoo, K. S. (2008). Antioxidant activity of three edible seaweeds from two areas in South East Asia. LWT — Food Science and Technology, 41, 1067–1972. DOI: 10.1016/j.lwt.2007.06.013.CrossRefGoogle Scholar
  9. Cradduck, W. C. (2001). Influence of Ascophyllum nodosum on selenium and antioxidants in beef cattle. MSc. thesis, Texas Tech University, Lubbock, TX, USA.Google Scholar
  10. Fallarero, A., Peltoketo, A., Loikkanen, J., Tammela, P., Vidal, A., & Vuorela, P. (2006). Effects of aqueous extracts of Bryothamnion triquetrum on chemical hypoxia and aglycemia-induced damage in GT1-7 mouse hypothalamic immortalized cells. Phytomedicin, 13, 240–245. DOI: 10.1016/j.phymed.2003.10.009.CrossRefGoogle Scholar
  11. Funahashi, H., Imai, T., Mase, T., Sekiya, M., Yokoi, K., Hayashi, H., Shibata, A., Hayashi, T., Nishikawa, M., Suda, N., Hibi, Y., Mizuno, Y., Tsukamura, K., Hayakawa, A., & Tanuma, S. (2001). Seaweed prevents breast cancer? Cancer Science, 92, 483–487. DOI: 10.1111/j.1349-7006.2001.tb01119.x.CrossRefGoogle Scholar
  12. Gaudreau, C., & Huguette, G. (1997). Comparison of disc diffusion and agar dilution methods for antibiotic susceptibility testing of Campylobacter jejuni subsp. jejuni and Campylobacter coli. Journal of Antimicrobial Chemotherapy, 39, 707–712. DOI: 10.1093/jac/39.6.707.CrossRefGoogle Scholar
  13. Genovese, M. I., Hassimotto, N. M. A., & Lajolo, F. M. (2005). Isoflavone profile and antioxidant activity of Brazilian soybean varieties. Food Science and Technology International, 11, 205–211. DOI: 10.1177/1082013205054499.CrossRefGoogle Scholar
  14. Gülçın, I., Oktay, M., Kıreçı, E., & Küfrevıoğlu, Ö. I. (2003). Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chemistry, 83, 371–382. DOI: 10.1016/S0308-8146(03)00098-0.CrossRefGoogle Scholar
  15. Halliwell, B., Aeschbach, R., Löliger, J., & Aruoma, O. I. (1995). The characterization of antioxidants. Food and Chemical Toxicology, 33, 601–617. DOI: 10.1016/0278-6915(95)00024-V.CrossRefGoogle Scholar
  16. Han, J., Xing, D., Sun, H., Lu, H., Li, M., & Du, L. (2002). Comparison of flavonoids, terpenoids and their natural complex in Ginkgo biloba on antioxidant effect. Zhongguo Yaolixue Tongbao, 18, 115–117.Google Scholar
  17. Jiménez-Escrig, A., & Sánchez-Muñiz, F. J. (2000). Dietary fiber from edible seaweeds: chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutrition Research, 20, 585–598. DOI: 10.1016/S0271-5317(00)00149-4.CrossRefGoogle Scholar
  18. Kang, K. A., Bu, H. D., Park, D. S, Go, G. M., Jee, Y., Shin, T., & Hyun, J. W. (2005). Antioxidant activity of ethanol extract of Callophyllis japonica. Phytotherapy Research, 19, 506–510. DOI: 10.1002/ptr.1692.CrossRefGoogle Scholar
  19. Kang, H. S., Kim, H. R., Byun, D. S., Son, B. W., Nam, T. J., & Choi, J. S. (2004). Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera. Archives of Pharmacal Research, 27, 1226–1232. DOI:10.1007/BF02975886.CrossRefGoogle Scholar
  20. Kajiwara, T., Matsui, K., Akakabe, Y., Murakawa, T., & Arai C. (2006). Antimicrobial browning-inhibitory effect of flavor compounds in seaweeds. Journal of Applied Phycology, 18, 413–422. DOI: 10.1007/s10811-006-9046-6.CrossRefGoogle Scholar
  21. Kim, Y. J., Kang, K. S., & Yokozawa, T. (2008). The antimelanogenic effect of pycnogenol by its anti-oxidative actions. Food and Chemical Toxicology, 46, 2466–2471. DOI: 10.1016/j.fct.2008.04.002.CrossRefGoogle Scholar
  22. Kobayashi, Y., Kayahara, H., Tadasa, K., Nakamura, T., & Tanaka, H. (1995). Synthesis of amino acid derivatives of kojic acid and their tyrosniase inhibitory activity. Bioscience, Biotechnology, and Biochemistry, 59, 1745–1746. DOI: 10.1271/bbb.59.1745.CrossRefGoogle Scholar
  23. Kornprobst, J.-M. (2005). Substances naturelles d’origine marine: chimiodiversité, pharmacodiversité, biotechnologies. Paris, France: Lavoisier.Google Scholar
  24. Kuda, T., Tsunekawaa, M., Goto, H., & Araki, Y. (2005). Antioxidant properties of four edible algae harvested in the Noto Peninsula, Japan. Journal of Food Composition and Analysis, 18, 625–633. DOI: 10.1016/j.jfca.2004.06.015.CrossRefGoogle Scholar
  25. McCord, J. M., & Fridovich, I. (1969). Superoxide dismutase An enzymic function for erythrocuprein (hemocuprein). The Journal of Biological Chemistry, 244, 6049–6055.Google Scholar
  26. Maruyama, H., Watanabe, K., & Yamamoto, I. (1991). Effect of dietary kelp on lipid peroxidation and glutathione peroxidase activity in livers of rats given breast carcinogen DMBA. Nutrition and Cancer, 15, 221–228. DOI: 10.1080/01635589109514130.CrossRefGoogle Scholar
  27. Matsuda, H., Ishikado, A., Nishida, N., Ninomiya, K., Fujiwara, H., Kobayashi, Y., & Yoshikawa, M. (1998). Hepatoprotective, superoxide scavenging, and antioxidative activities of aromatic constituents from the bark of Betula platyphylla var. japonica. Bioorganic & Medicinal Chemistry Letters, 8, 2939–2944. DOI: 10.1016/S0960-894X(98)00528-9.CrossRefGoogle Scholar
  28. Momtaza, S., Mapunya, B. M., Houghton, P. J., Edgerly, C., Hussein, A., Naidoo, S., & Lall, N. (2008). Tyrosinase inhibition by extracts and constituents of Sideroxylon inerme L. stem bark, used in South Africa for skin lightening. Journal of Ethnopharmacology, 119, 507–512. DOI: 10.1016/j.jep.2008.06.006.CrossRefGoogle Scholar
  29. Miliauskas, G., Venskutonis, P. R., & van Beek, T. A. (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chemistry, 85, 231–237. DOI: 10.1016/j.foodchem.2003.05.007.CrossRefGoogle Scholar
  30. Pieroni, A., Quave, C. L., Villanelli, M. L., Mangino, P., Sabbatini, G., Santini, L., Boccetti, T., Profili, M., Ciccioli, T., Rampa, L. G., Antonini, G., Girolamini, C., Cecchi, M., & Tomasi, M., (2004). Ethnopharmacognostic survey on the natural ingredients in folk cosmetics, cosmeceuticals and remedies for healing skin diseases in the inland Marches, Central-Eastern Italy. Journal of Ethnopharmacology, 91, 331–344. DOI: 10.1016/j.jep.2004.01.015.CrossRefGoogle Scholar
  31. Rice-Evans, C. A., Miller, N. J., Bolwell, P. G., Bramley, P. M., & Pridham, J. B. (1995). The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radical Research, 22, 375–383.CrossRefGoogle Scholar
  32. Santoso, J., Yoshie, Y., & Suzuki, T. (2002). The distribution and profile of nutrients and catechins of some Indonesian seaweeds. Fisheries Science, 68(Supplement/2), 1647–1648.Google Scholar
  33. Smit, A. J. (2004). Medicinal and pharmaceutical uses of seaweed natural products: A review. Journal of Applied Phycology, 16, 245–262. DOI: 10.1023/B:JAPH.0000047783.36600.ef.CrossRefGoogle Scholar
  34. Turner, J. L., Dritz, S. S., Higgins, J. J., & Minton, J. E. (2002). Effects of Ascophyllum nodosum extract on growth performance and immune function of young pigs challenged with Salmonella Typhimurium. Journal of Animal Science, 80, 1947–1953.Google Scholar
  35. Valdebenito, H., Bittner, M., Sammes, P. G., Silva, M., & Watson, W. H. (1982). A compound with antimicrobial activity isolated from the red seaweed Laurencia chilensis. Phytochemistry, 21, 1456–1457. DOI: 10.1016/0031-9422(82)80170-2.CrossRefGoogle Scholar
  36. Wang, T., Jónsdóttir, R., & Ólafsdóttir, G. (2009). Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chemistry, 116, 240–248. DOI: 10.1016/j.foodchem.2009.02.041.CrossRefGoogle Scholar
  37. Wong, C. K., Ooi, V. E. C., & Ang, P. O. (2000). Protective effects of seaweeds against liver injury caused by carbon tetrachloride in rats. Chemosphere, 41, 173–176. DOI: 10.1016/S0045-6535(99)00407-5.CrossRefGoogle Scholar
  38. Yeh, C.-T., & Yen, G.-C. (2006). Induction of hepatic antioxidant enzymes by phenolic acids in rats is accompanied by increased levels of multidrug resistance-associated protein 3 mRNA expression. The Journal of Nutrition, 136, 11–15.Google Scholar
  39. Yuan, Y. V., & Walsh, N. A. (2006). Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food and Chemical Toxicology, 44, 1144–1150. DOI: 10.1016/j.fct.2006.02.002.CrossRefGoogle Scholar
  40. Yoshie-Stark, Y., Hsieh, Y.-P., & Suzuki, T. (2003). Distribution of flavonoids and related compounds from seaweeds in Japan. Journal of Tokyo University of Fisheries, 89, 1–6.Google Scholar
  41. Yoshie, Y., Wang, W., Petillo, D., & Suzuki, T. (2000). Distribution of catechins in Japanese seaweeds. Fisheries Science, 66, 998–1000. DOI: 10.1111/j.1444-2906.2000.00160.xCrossRefGoogle Scholar
  42. Zubia, M., Fabre, M. S. Kerjean, V., Le Lann, K., Stiger-Pouvreau, V., Fauchon, M., & Deslandes, E. (2009). Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. Food Chemistry, 116, 693–701. DOI: 10.1016/j.foodchem.2009.03.025.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2010

Authors and Affiliations

  • Jakeline Trejos Jiménez
    • 1
    Email author
  • Shane O’Connell
    • 2
  • Henry Lyons
    • 2
  • Benjamin Bradley
    • 2
  • Michael Hall
    • 2
  1. 1.Institute of Biotechnology and Food Science, Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislavaSlovak Republic
  2. 2.Shannon Applied Biotechnology CentreInstitute of TechnologyTralee, KerryIreland

Personalised recommendations