Skip to main content
Log in

Preparation and properties of surfactant-bacillolysin ion-pair in organic solvents

  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The transesterification-active enzyme bacillolysin was extracted into organic solvents such as isooctane by enzyme-AOT (bis (2-ethylhexyl) sulfosuccinate) ion-pairing preserving its natural second structure and catalytic activity. Extraction efficiency was affected by the interaction mode of the two phases, ionic strength, and pH of aqueous phase, surfactant and enzyme concentration. Magnetic stirring with phase mixing was favorable for the enzyme extraction. Optimal ionic strength and pH were 8 mM CaCl2 and 5.0, respectively. Critical number of AOT molecule for an enzyme molecule to be extracted into isooctane was 89. Optimal initial enzyme concentration in the aqueous phase was 7 mg mL−1 while the initial AOT concentration in isooctane was 3 mM. Within CMC (critical micellar concentration) of AOT in isooctane, the increase of initial AOT concentration enhanced the extraction efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altreuter, D. H., Dordick, J. S., & Clark, D. S. (2002). Optimization of ion-paired lipase for non-aqueous media: acylation of doxorubicin based on surface models of fatty acid esterification. Enzyme and Microbial Technology, 31, 10–19. DOI: 10.1016/S0141-0229(02)00092-3.

    Article  CAS  Google Scholar 

  • Bruno, F. F., Akkara, J. A., Ayyagari, M., Kaplan, D. L., Gross, R., Swift, G., & Dordick, J. S. (1995). Enzymic modification of insoluble amylose in organic solvents. Macromolecules, 28, 8881–8883. DOI: 10.1021/ma00130a028.

    Article  CAS  Google Scholar 

  • Castillo, B., Solá, R. J., Ferrer, A., Barletta, G., & Griebenow, K. (2007). Effect of PEG modification on subtilisin Carlsberg activity, enantioselectivity, and structural dynamics in 1,4-dioxane. Biotechnology and Bioengineering, 99, 9–17. DOI: 10.1002/bit.21510.

    Article  CAS  Google Scholar 

  • Gu, J. D., Fan, X. R., Wang, S. G., & Zhang, Y. (2009). Study of enzyme transesterification in solvents with fluorospectrophometry. Huaxue Tongbao, 72, 444–448.

    CAS  Google Scholar 

  • He, P., Huang, J. L., Shi, Q. C., Wu, G. H., Chu, Z. C., & Huang, Z. L. (2009). Enzyme activity changes of papain and immobilized papain in organic solvents with different logP values. Journal of Northwest A&F University (Natural Science Edition), 37, 223–229.

    Google Scholar 

  • Jurado, E., Camacho, F., Luzón, G., & Vicaria, J. M. (2004). Kinetic models of activity for β-galactosidases: influence of pH, ionic concentration and temperature. Enzyme and Microbial Technology, 34, 33–40. DOI: 10.1016/j.enzmictec.2003.07.004.

    Article  CAS  Google Scholar 

  • Konarzycka-Bessler, M., & Bornscheuer, U. T. (2003). A high-throughput-screening method for determining the synthetic activity of hydrolases. Angewandte Chemie International Edition, 42, 1418–1420. DOI: 10.1002/anie.200390365.

    Article  CAS  Google Scholar 

  • Paradkar, V. M., & Dordick, J. S. (1994). Mechanism of extraction of chymotrypsin into isooctane at very low concentrations of aerosol OT in the absence of reversed micelles. Biotechnology and Bioengineering, 43, 529–540. DOI: 10.1002/bit.260430614.

    Article  CAS  Google Scholar 

  • Pepić, I., Filipović-Grčić, J., & Jalšenjak, I. (2008). Interactions in a nonionic surfactant and chitosan mixtures. Colloids and Surfaces A, 327, 95–102. DOI: 10.1016/j.colsurfa.2008.06.009.

    Article  CAS  Google Scholar 

  • Persson, M., Mladenoska, I., Wehtje, E., & Adlercreutz, P. (2002). Preparation of lipases for use in organic solvents. Enzyme and Microbial Technology, 31, 833–841. DOI: 10.1016/S0141-0229(02)00184-9.

    Article  CAS  Google Scholar 

  • Rodakiewicz-Nowak, J., Monkiewicz, M., & Haber, J. (2002). Enzymatic activity of the A. bisporus tyrosinase in AOT/isooctane water-in-oil microemulsions. Colloids and Surfaces A, 208, 347–356. DOI: 10.1016/S0927-7757(02)00161-9.

    Article  CAS  Google Scholar 

  • Roy, I., & Gupta, M. N. (2005). Enhancing reaction rate for transesterification reaction catalyzed by Chromobacterium lipase. Enzyme and Microbial Technology, 36, 896–899. DOI: 10.1016/j.enzmictec.2005.01.022.

    Article  CAS  Google Scholar 

  • Roy, I., Sharma, A., & Gupta, M. N. (2004). Obtaining higher transesterification rates with subtilisin Carlsberg in nonaqueous media. Bioorganic & Medicinal Chemistry Letters, 14, 887–889. DOI: 10.1016/j.bmcl.2003.12.021.

    Article  CAS  Google Scholar 

  • Tonova, K., & Lazarova, Z. (2008). Reversed micelle solvents as tools of enzyme purification and enzyme-catalyzed conversion. Biotechnology Advances, 26, 516–532. DOI: 10.1016/j.biotechadv.2008.06.002.

    Article  CAS  Google Scholar 

  • Tsuru, D., McConn, J. D., & Yasunobu, K. T. (1965). Bacillus subtilis neutral proteinase II. Some physicochemical properties. Journal of Biological Chemistry, 240, 2415–2420.

    CAS  Google Scholar 

  • Xie, J., & Hsieh, Y.-L. (2001). Enzyme-catalyzed transesterification of vinyl esters on cellulose solids. Journal of Polymer Science Part A: Polymer Chemistry, 39, 1931–1939. DOI: 10.1002/pola.1170.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Gu, J., Wang, S. et al. Preparation and properties of surfactant-bacillolysin ion-pair in organic solvents. Chem. Pap. 64, 443–449 (2010). https://doi.org/10.2478/s11696-010-0018-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-010-0018-6

Keywords

Navigation