Advertisement

Chemical Papers

, Volume 64, Issue 4, pp 443–449 | Cite as

Preparation and properties of surfactant-bacillolysin ion-pair in organic solvents

  • Ying ZhangEmail author
  • Jiadong Gu
  • Shugen Wang
  • Xuerong Fan
Article

Abstract

The transesterification-active enzyme bacillolysin was extracted into organic solvents such as isooctane by enzyme-AOT (bis (2-ethylhexyl) sulfosuccinate) ion-pairing preserving its natural second structure and catalytic activity. Extraction efficiency was affected by the interaction mode of the two phases, ionic strength, and pH of aqueous phase, surfactant and enzyme concentration. Magnetic stirring with phase mixing was favorable for the enzyme extraction. Optimal ionic strength and pH were 8 mM CaCl2 and 5.0, respectively. Critical number of AOT molecule for an enzyme molecule to be extracted into isooctane was 89. Optimal initial enzyme concentration in the aqueous phase was 7 mg mL−1 while the initial AOT concentration in isooctane was 3 mM. Within CMC (critical micellar concentration) of AOT in isooctane, the increase of initial AOT concentration enhanced the extraction efficiency.

Keywords

bacillolysin AOT ion-pair solvent transesterification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altreuter, D. H., Dordick, J. S., & Clark, D. S. (2002). Optimization of ion-paired lipase for non-aqueous media: acylation of doxorubicin based on surface models of fatty acid esterification. Enzyme and Microbial Technology, 31, 10–19. DOI: 10.1016/S0141-0229(02)00092-3.CrossRefGoogle Scholar
  2. Bruno, F. F., Akkara, J. A., Ayyagari, M., Kaplan, D. L., Gross, R., Swift, G., & Dordick, J. S. (1995). Enzymic modification of insoluble amylose in organic solvents. Macromolecules, 28, 8881–8883. DOI: 10.1021/ma00130a028.CrossRefGoogle Scholar
  3. Castillo, B., Solá, R. J., Ferrer, A., Barletta, G., & Griebenow, K. (2007). Effect of PEG modification on subtilisin Carlsberg activity, enantioselectivity, and structural dynamics in 1,4-dioxane. Biotechnology and Bioengineering, 99, 9–17. DOI: 10.1002/bit.21510.CrossRefGoogle Scholar
  4. Gu, J. D., Fan, X. R., Wang, S. G., & Zhang, Y. (2009). Study of enzyme transesterification in solvents with fluorospectrophometry. Huaxue Tongbao, 72, 444–448.Google Scholar
  5. He, P., Huang, J. L., Shi, Q. C., Wu, G. H., Chu, Z. C., & Huang, Z. L. (2009). Enzyme activity changes of papain and immobilized papain in organic solvents with different logP values. Journal of Northwest A&F University (Natural Science Edition), 37, 223–229.Google Scholar
  6. Jurado, E., Camacho, F., Luzón, G., & Vicaria, J. M. (2004). Kinetic models of activity for β-galactosidases: influence of pH, ionic concentration and temperature. Enzyme and Microbial Technology, 34, 33–40. DOI: 10.1016/j.enzmictec.2003.07.004.CrossRefGoogle Scholar
  7. Konarzycka-Bessler, M., & Bornscheuer, U. T. (2003). A high-throughput-screening method for determining the synthetic activity of hydrolases. Angewandte Chemie International Edition, 42, 1418–1420. DOI: 10.1002/anie.200390365.CrossRefGoogle Scholar
  8. Paradkar, V. M., & Dordick, J. S. (1994). Mechanism of extraction of chymotrypsin into isooctane at very low concentrations of aerosol OT in the absence of reversed micelles. Biotechnology and Bioengineering, 43, 529–540. DOI: 10.1002/bit.260430614.CrossRefGoogle Scholar
  9. Pepić, I., Filipović-Grčić, J., & Jalšenjak, I. (2008). Interactions in a nonionic surfactant and chitosan mixtures. Colloids and Surfaces A, 327, 95–102. DOI: 10.1016/j.colsurfa.2008.06.009.CrossRefGoogle Scholar
  10. Persson, M., Mladenoska, I., Wehtje, E., & Adlercreutz, P. (2002). Preparation of lipases for use in organic solvents. Enzyme and Microbial Technology, 31, 833–841. DOI: 10.1016/S0141-0229(02)00184-9.CrossRefGoogle Scholar
  11. Rodakiewicz-Nowak, J., Monkiewicz, M., & Haber, J. (2002). Enzymatic activity of the A. bisporus tyrosinase in AOT/isooctane water-in-oil microemulsions. Colloids and Surfaces A, 208, 347–356. DOI: 10.1016/S0927-7757(02)00161-9.CrossRefGoogle Scholar
  12. Roy, I., & Gupta, M. N. (2005). Enhancing reaction rate for transesterification reaction catalyzed by Chromobacterium lipase. Enzyme and Microbial Technology, 36, 896–899. DOI: 10.1016/j.enzmictec.2005.01.022.CrossRefGoogle Scholar
  13. Roy, I., Sharma, A., & Gupta, M. N. (2004). Obtaining higher transesterification rates with subtilisin Carlsberg in nonaqueous media. Bioorganic & Medicinal Chemistry Letters, 14, 887–889. DOI: 10.1016/j.bmcl.2003.12.021.CrossRefGoogle Scholar
  14. Tonova, K., & Lazarova, Z. (2008). Reversed micelle solvents as tools of enzyme purification and enzyme-catalyzed conversion. Biotechnology Advances, 26, 516–532. DOI: 10.1016/j.biotechadv.2008.06.002.CrossRefGoogle Scholar
  15. Tsuru, D., McConn, J. D., & Yasunobu, K. T. (1965). Bacillus subtilis neutral proteinase II. Some physicochemical properties. Journal of Biological Chemistry, 240, 2415–2420.Google Scholar
  16. Xie, J., & Hsieh, Y.-L. (2001). Enzyme-catalyzed transesterification of vinyl esters on cellulose solids. Journal of Polymer Science Part A: Polymer Chemistry, 39, 1931–1939. DOI: 10.1002/pola.1170.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2010

Authors and Affiliations

  • Ying Zhang
    • 1
    Email author
  • Jiadong Gu
    • 1
  • Shugen Wang
    • 1
  • Xuerong Fan
    • 1
  1. 1.Key Laboratory of Eco-Textiles, School of Textiles and ClothingJiangnan UniversityWuxiChina

Personalised recommendations