Skip to main content
Log in

Application of anoxic fixed film and aerobic CSTR bioreactor in treatment of nanofiltration concentrate of real textile wastewater

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

An anoxic fixed film bioreactor (FFB) with biomass immobilized on activated carbon and an aerobic continuous stirred tank bioreactor with overflow were applied to degrade concentrate from nanofiltration of real textile effluents containing Reactive Red 120 (RR-120). The efficiency of color removal was 99 % irrespective of the fraction of nanofiltration concentrate in the feed. An approximate dye balance based on the assessed adsorption capacity of RR-120 by activated carbon indicated that the dye was removed by means of adsorption as well as of biological processes. Aromatic amine released from a dye molecule was fully adsorbed by activated carbon. COD level in the outflow of the system was above that imposed by legislation. Despite an adjustment of the feed pH to 7 this was constantly increasing up to the value above 9 in both reactors. Neither the nanofiltration concentrate nor the effluents from the bioreactors affected the growth of Pseudomonas putida used as toxicity indicator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allègre, C., Moulin, P., Maisseu, M., & Charbit, F. (2006). Treatment and reuse of reactive dyeing effluents. Journal of Membrane Science, 269, 15–34. DOI: 10.1016/j.memsci.2005. 06.014.

    Article  Google Scholar 

  • Barragán, B. E., Costa, C., & Márquez, M. C. (2007). Biodegradation of azo dyes by bacteria inoculated on solid media. Dyes and Pigments, 75, 73–81. DOI: 10.1016/j.dyepig.2006. 05.014.

    Article  Google Scholar 

  • Council Directive (1991). Council Directive 91/271/EEC of 21 May 1991 concerning urban wastewater treatment. Brussels: The Council of the European Communities.

    Google Scholar 

  • Faria, P. C. C., Órfão, J. J. M., Figueiredo, J. L., & Pereira, M. F. R. (2008). Adsorption of aromatic compounds from the biodegradation of azo dyes on activated carbon. Applied Surface Science, 254, 3497–3503. DOI: 10.1016/j.apsusc.2007.11.043.

    Article  CAS  Google Scholar 

  • Frijters, C. T. M. J., Vos, R. H., Scheffer, G., & Mulder, R. (2006). Decolorizing and detoxifying textile wastewater, containing both soluble and insoluble dyes, in a full scale combined anaerobic/aerobic system. Water Research, 40, 1249–1257. DOI: 10.1016/j.waters.2006.01.013.

    Article  CAS  Google Scholar 

  • Hassan, S. S. M., Awwad, N. S., & Aboterika, A. H. A. (2009). Removal of synthetic reactive dyes from textile wastewater by Sorel’s cement. Journal of Hazardous Materials, 162, 994–999. DOI: 10.1016/j.jhazmat.2008.05.138.

    Article  CAS  Google Scholar 

  • Hessel, C., Allegre, C., Maisseu, M., Charbit, F., & Moulin, P. (2007). Guidelines and legislation for dye house effluents. Journal of Environmental Management, 83, 171–180. DOI: 10.1016/j.jenvman.2006.02.012.

    Article  CAS  Google Scholar 

  • Işik, M., & Sponza, D. T. (2007). Fate and toxicity of azo dye metabolites under batch long-term anaerobic incubations. Enzyme and Microbial Technology, 40, 934–939. DOI: 10.1016/j.enzmictec.2006.07.032.

    Article  Google Scholar 

  • Kapdan, I. K., & Alparslan, S. (2005). Application of anaerobic-aerobic sequential treatment system to real textile wastewater for color and COD removal. Enzyme and Microbial Technology, 36, 273–279. DOI: 10.1016/j.enzmictec.2004.08.040.

    Article  CAS  Google Scholar 

  • Klepacz-Smółka, A., Paździor, K., Ledakowicz, S., Sójka-Ledakowicz, J., Mrozińska, Z., & Żyłła, R. (2009). Kinetic studies of the decolourisation of concentrates from nanofiltration treatment of real textile effluents in anaerobic/aerobic sequencing batch reactors. Environment Protection Engineering, 3, 145–155.

    Google Scholar 

  • Lucas, M. S., & Peres, J. A. (2007). Degradation of Reactive Black 5 by Fenton/UV-C and ferrioxalate/H2O2/solar light processes. Dyes and Pigments, 74, 622–629. DOI: 10.1016/j.dyepig.2006.04.005.

    Article  CAS  Google Scholar 

  • Ong, S.-A., Toorisaka, E., Hirata, M., & Hano, T. (2008). Granular activated carbon-biofilm configured sequencing batch reactor treatment of C.I. Acid Orange 7. Dyes and Pigments, 76, 142–146. DOI: 10.1016/j.dyepig.2006.08.024.

    Article  Google Scholar 

  • Pandey, A., Singh, P., & Iyengar, L. (2007). Bacterial decolorization and degradation of azo dyes. International Biodeterioration & Biodegradation, 59, 73–84. DOI: 10.1016/j.ibiod. 2006.08.006.

    Article  CAS  Google Scholar 

  • Paździor, K., Klepacz-Smółka, A., Ledakowicz, S., Sójka-Ledakowicz, J., Mrozińska, Z., & Żyłła, R. (2009). Integration of nanofiltration and biological degradation of textile wastewater containing azo dye. Chemosphere, 75, 250–255. DOI: 10.1016/j.chemosphere.2008.12.016.

    Article  Google Scholar 

  • Pengthamkeerati, P., Satapanajaru, T., & Singchan, O. (2008). Sorption of reactive dye from aqueous solution on biomass fly ash. Journal of Hazardous Materials, 153, 1149–1156. DOI: 10.1016/j.jhazmat.2007.09.074.

    Article  CAS  Google Scholar 

  • Qin, J.-J., Oo, M. H., & Kekre, K. A. (2007). Nanofiltration for recovering wastewater from a specific dyeing facility. Separation and Purification Technology, 56, 199–203. DOI: 10.1016/j.seppur.2007.02.002.

    Article  CAS  Google Scholar 

  • van der Zee, F. P., Bisschops, I. A. E., Lettinga, G., & Field, J. A. (2003). Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes. Environmental Science & Technology, 37, 402–408. DOI: 10.1021/es025885o.

    Article  Google Scholar 

  • van der Zee, F. P., Bouwman, R. H. M., Strik, D. P. B. T. B., Lettinga, G., & Field, J. A. (2001). Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors. Biotechnology and Bioengineering, 75, 691–701. DOI: 10.1002/bit.10073.

    Article  Google Scholar 

  • Wang, X., Zhu, N., & Yin, B. (2008). Preparation of sludge-based activated carbon and its application in dye wastewater treatment. Journal of Hazardous Materials, 153, 22–27. DOI: 10.1016/j.jhazmat.2007.08.011.

    Article  CAS  Google Scholar 

  • Wu, J., Doan, H., & Upreti, S. (2008). Decolorization of aqueous textile reactive dye by ozone. Chemical Engineering Journal, 142, 156–160. DOI: 10.1016/j.cej.2007.11.019.

    Article  CAS  Google Scholar 

  • Żyłła, R., Sójka-Ledakowicz, J., Stelmach, E., & Ledakowicz, S. (2006). Coupling of membrane filtration with biological methods for textile wastewater treatment. Desalination, 198, 316–325. DOI: 10.1016/j.desal.2006.02.008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Klepacz-Smółka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klepacz-Smółka, A., Sójka-Ledakowicz, J., Paździor, K. et al. Application of anoxic fixed film and aerobic CSTR bioreactor in treatment of nanofiltration concentrate of real textile wastewater. Chem. Pap. 64, 230–236 (2010). https://doi.org/10.2478/s11696-009-0115-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-009-0115-6

Keywords

Navigation