Skip to main content

Advertisement

Log in

Kinetic study of wood chips decomposition by TGA

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Pyrolysis of a wood chips mixture and main wood compounds such as hemicellulose, cellulose and lignin was investigated by thermogravimetry. The investigation was carried out in inert nitrogen atmosphere with temperatures ranging from 20°C to 900°C for four heating rates: 2 K min−1, 5 K min−1, 10 K min−1, and 15 K min−1. Hemicellulose, cellulose, and lignin were used as the main compounds of biomass. TGA and DTG temperature dependencies were evaluated. Decomposition processes proceed in three main stages: water evaporation, and active and passive pyrolysis. The decomposition of hemicellulose and cellulose takes place in the temperature range of 200–380°C and 250–380°C, while lignin decomposition seems to be ranging from 180°C up to 900°C. The isoconversional method was used to determine kinetic parameters such as activation energy and pre-exponential factor mainly in the stage of active pyrolysis and partially in the passive stage. It was found that, at the end of the decomposition process, the value of activation energy decreases. Reaction order does not have a significant influence on the process because of the high value of the pre-exponential factor. Obtained kinetic parameters were used to calculate simulated decompositions at different heating rates. Experimental data compared with the simulation ones were in good accordance at all heating rates. From the pyrolysis of hemicellulose, cellulose, and lignin it is clear that the decomposition process of wood is dependent on the composition and concentration of the main compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Biagini, E., Fantei, A., & Tognotti, L. (2008). Effect of the heating rate on the devolatilization of biomass residues. Thermochimica Acta, 472, 55–63. DOI: 10.1016/j.tca.2008.03.015.

    Article  CAS  Google Scholar 

  • Brown, M. E. (2001). Introduction to thermal analysis: Techniques and applications (2nd ed.). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Choudhury, D., Borah, R., Goswamee, R., Sharmah, H., & Rao, P. (2007). Non-isothermal thermogravimetric pyrolysis kinetics of waste petroleum refinery sludge by isoconversional approach. Journal of Thermal Analysis and Calorimetry, 89, 965–970. DOI: 10.1007/s10973-007-8322-2.

    Article  CAS  Google Scholar 

  • Couhert, C., Commandre, J.-M., & Salvador, S. (2009a). Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin? Fuel, 88, 408–417. DOI: 10.1016/j.fuel.2008.09.019.

    Article  CAS  Google Scholar 

  • Couhert, C., Commandré, J.-M., & Salvador, S. (2009b). Failure of the component additivity rule to predict gas yields of biomass in flash pyrolysis at 950°C. Biomass and Bioenergy, 33, 316–326. DOI: 10.1016/j.biombioe.2008.07.003.

    Article  CAS  Google Scholar 

  • Di Blasi, C. (2008). Modeling chemical and physical processes of wood and biomass pyrolysis. Progress in Energy and Combustion Science, 34, 47–90. DOI: 10.1016/j.pecs.2006.12.001.

    Article  Google Scholar 

  • Dinwoodie, J. M. (2000). Timber: Its nature and behaviour (2nd ed.). London, UK: Taylor & Francis.

    Google Scholar 

  • Grønli, M. G., Várhegyi, G., & Di Blasi, C. (2002). Thermogravimetric analysis and devolatilization kinetics of wood. Industrial & Engineering Chemistry Research, 41, 4201–4208. DOI: 10.1021/ie0201157.

    Article  Google Scholar 

  • Kastanaki, E., Vamvuka, D., Grammelis, P., & Kakaras, E. (2002). Thermogravimetric studies of the behavior of lignite-biomass blends during devolatilization. Fuel Processing Technology, 77–78, 159–166. DOI: 10.1016/S0378-3820(02)00049-8.

    Article  Google Scholar 

  • Koreňová, Z. (2008). Optimization of thermal decomposition conditions of waste tires. Doctoral dissertation. Slovak University of Technology, Bratislava, Slovakia.

    Google Scholar 

  • Kumar, A., Wang, L., Dzenis, Y. A., Jones, D. D., & Hanna, M. A. (2008). Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock. Biomass and Bioenergy, 32, 460–467. DOI: 10.1016/j.biombioe.2007.11.004.

    Article  CAS  Google Scholar 

  • Lv, P., Wu, C., Ma, L., & Yuan, Z. (2008). A study on the economic efficiency of hydrogen production from biomass residues in China. Renewable Energy, 33, 1874–1879. DOI: 10.1016/j.renene.2007.11.002.

    Article  Google Scholar 

  • McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource Technology, 83, 37–46. DOI: 10.1016/S0960-8524(01)00118-3.

    Article  CAS  Google Scholar 

  • Mohan, D., Pittman, C. U., Jr., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels, 20, 848–889. DOI: 10.1021/ef0502397.

    Article  CAS  Google Scholar 

  • Munir, S., Daood, S. S., Nimmo, W., Cunliffe, A. M., & Gibbs, B. M. (2009). Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresource Technology, 100, 1413–1418. DOI: 10.1016/j.biortech.2008.07.065.

    Article  CAS  Google Scholar 

  • Orfão, J. J. M., Antunes, F. J. A., & Figueiredo, J. L. (1999). Pyrolysis kinetics of lignocellulosic materials-three independent reactions model. Fuel, 78, 349–358. DOI: 10.1016/S0016-2361(98)00156-2.

    Article  Google Scholar 

  • Park, Y.-H., Kim, J., Kim, S.-S., & Park, Y.-K. (2009). Pyrolysis characteristics and kinetics of oak trees using thermogravimetric analyzer and micro-tubing reactor. Bioresource Technology, 100, 400–405. DOI: 10.1016/j.biortech.2008.06.040.

    Article  CAS  Google Scholar 

  • Šimon, P. (2004). Isoconversional methods: Fundamentals, meaning and application. Journal of Thermal Analysis and Calorimetry, 76, 123–132. DOI: 10.1023/B:JTAN.0000027811.80036.6c.

    Article  Google Scholar 

  • Stenseng, M., Jensen, A., & Dam-Johansen, K. (2001). Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry. Journal of Analytical and Applied Pyrolysis, 58–59, 765–780. DOI: 10.1016/S0165-2370(00)00200-X.

    Article  Google Scholar 

  • Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86, 1781–1788. DOI: 10.1016/j.fuel.2006.12.013.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ľudovít Jelemenský.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gašparovič, L., Koreňová, Z. & Jelemenský, Ľ. Kinetic study of wood chips decomposition by TGA. Chem. Pap. 64, 174–181 (2010). https://doi.org/10.2478/s11696-009-0109-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-009-0109-4

Keywords

Navigation