Skip to main content
Log in

LES and URANS modelling of turbulent liquid-liquid flow in a static mixer: Turbulent kinetic energy and turbulence dissipation rate

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The present study deals with numerical simulations of turbulent flow of a liquid-liquid system in a Kenics static mixer with ten inserts. CFD approach was used in two modes: large eddy simulation (LES) and unsteady Reynolds averaged Navier-Stokes (URANS). Large eddy simulation in the static mixer was carried out using the dynamic kinetic energy subgrid-scale model with standard wall functions whereas in URANS approach the standard k-ɛ turbulent model and standard wall functions were applied. Two-phase flow was modelled employing the “mixture model” of the Eulerian type. The simulations were performed mainly for the Reynolds number of 10000 with the volumetric ratio of 99 % of water to 1 % of oil. The investigations revealed that due to distinct distributions of the turbulence measures, the drop breakup process occurs with varying intensity in different locations within the mixer inserts. Significantly higher local values of the dissipation rate, ɛ, were predicted in URANS than in LES. However, both modelling methods indicated high values of ɛ at the beginning and the end of the mixer inserts, which implies the maximum shearing action exerted on the drops. Consequently, the inflow and outflow zone of each insert are the regions of the highest breakup intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreopoulos, Y., & Honkan, A. (1996). Experimental techniques for highly resolved measurements of rotation, strain and dissipation-rate tensors in turbulent flows. Measurement Science and Technology, 7, 1462–1476. DOI: 10.1088/0957-0233/7/10/017.

    Article  CAS  Google Scholar 

  • Byrde, O., & Sawley, M. L. (1999). Optimization of a Kenics static mixer for non-creeping flow conditions. Chemical Engineering Journal, 72, 163–169. DOI: 10.1016/S1385-8947(98)00145-4.

    Article  CAS  Google Scholar 

  • Chen, S., & Libby, D. (1978). Gas-liquid and liquid-liquid dispersions in a Kenics mixer. Paper presented at The 71st Annual AIChE Meeting, 8–18 November 1978, Paper No. 74d. Miami, FL, USA: AIChE.

    Google Scholar 

  • Chumakov, S. G. (2007). Scaling properties of subgrid-scale energy dissipation. Physics of Fluids, 19, 058104. DOI: 10.1063/1.2735001.

    Article  CAS  Google Scholar 

  • Das, P. K., Legrand, J., Morançais, P., & Camelle, G. (2005). Drop breakage model in static mixers at low and intermediate Reynolds number. Chemical Engineering Science, 60, 231–238. DOI: 10.1016/j.ces.2004.08.003.

    Article  CAS  Google Scholar 

  • Funakoshi, M. (2008). Chaotic mixing and mixing efficiency in a short time. Fluid Dynamics Research, 40, 1–33. DOI: 10.1016/j.fluiddyn.2007.04.004.

    Article  Google Scholar 

  • Germano, M., Piomelli, U., Moin, P., & Cabot, W. H. (1991). A dynamic subgridscale eddy viscosity model. Physics of Fluids A, 3, 1760–1765. DOI: 10.1063/1.857955.

    Article  Google Scholar 

  • Ghiaasiaan, S. M. (2008). Two-phase flow, boiling, and condensation. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Hewitt, G. F., & Vassilicos, J. C. (2005). Prediction of turbulent flows. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Hinze, J. O. (1994). Turbulence. New York, NY, USA: McGraw-Hill.

    Google Scholar 

  • Hobbs, D. M., & Muzzio, F. J. (1998). Optimization of a static mixer using dynamical system techniques. Chemical Engineering Science, 53, 3199–3213. DOI: 10.1016/S0009-2509(98)00115-8.

    Article  CAS  Google Scholar 

  • Hussein, H. J., & Martinuzzi, R. J. (1995). Energy balance for turbulent flow around a surface mounted cube placed in a channel. Physics of Fluids, 8, 764–780. DOI: 10.1063/1.868860.

    Article  Google Scholar 

  • Jaworski, Z. (2005). Computational fluid dynamics in chemical engineering. Warsaw, Poland: EXIT. (in Polish)

    Google Scholar 

  • Jaworski, Z., & Murasiewicz, H. (2008). CFD of turbulent liquid-liquid flow in Kenics static mixers. In Proceedings of the 11th International Conference on Multiphase Flow in Industrial Plant, 7–10 September 2008 (pp. 133–142). Palermo, Italy.

    Google Scholar 

  • Jaworski, Z., Pianko-Oprych, P., Marchisio, D. L., & Nienow, A. W. (2007). CFD modelling of turbulent drop breakage in a Kenics static mixer and comparison with experimental data. Chemical Engineering Research and Design, 85, 753–759. DOI: 10.1205/cherd06179.

    Article  CAS  Google Scholar 

  • Keshav, T. R., Somaraju, P., Kalyan, K., Saroha, A. K., & Nigam, K. D. P. (2008). Liquid phase residence time distribution for gas-liquid flow in Kenics static mixer. Chemical Engineering and Processing, 47, 2275–2280. DOI: 10.1016/j.cep.2007.12.015.

    CAS  Google Scholar 

  • Kilander, J., & Rasmuson, A. (2005). Energy dissipation and macro instabilities in a stirred square tank investigated using a LE PIV approach and LDA measurements. Chemical Engineering Science, 60, 6844–6856. DOI: 10.1016/j.ces.2005.02.076.

    Article  CAS  Google Scholar 

  • Kim, W. W., & Menon, S. (1997). Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows. In Proceedings of the 35th Aerospace Sciences Meeting and Exhibit, 6–9 January 1997 (Paper No. 97-0210). Reno, NV, USA: American Institute of Aeronautics and Astronautics.

    Google Scholar 

  • Kresta, S. M., & Wood, P. E. (1993). The flow field produced by a pitched blade turbine: characterization of the turbulence and estimation of the dissipation rate. Chemical Engineering Science, 48, 1761–1774. DOI: 10.1016/0009-2509(93)80346-R.

    Article  CAS  Google Scholar 

  • Kumar, V., Shirke, V., & Nigam, K. D. P. (2008). Performance of Kenics static mixer over a wide range of Reynolds number. Chemical Engineering Journal, 139, 284–295. DOI: 10.1016/j.cej.2007.07.101.

    Article  CAS  Google Scholar 

  • Labourasse, E., & Sagaut, P. (2002). Reconstruction of turbulent fluctuations using a hybrid RANS/LES approach. Journal of Computational Physics, 182, 301–336. DOI: 10.1006/jcph.2002.7169.

    Article  CAS  Google Scholar 

  • Launder, B., & Spalding, D. (1972). Mathematical models of turbulence. London, UK: Academic Press.

    Google Scholar 

  • Lesieur, M. (1997). Turbulence in fluids. Stochastic and numerical modelling. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Lindenberg, C., Schöll, J., Vicum, L., Mazzotti, M., & Bozio, J. (2008). Experimental characterization and multi-scale modeling of mixing in static mixers. Chemical Engineering Science, 63, 4135–4149. DOI: 10.1016/j.ces.2008.05.026.

    Article  CAS  Google Scholar 

  • Mathew, G., Mezić, I., & Petzold, L. (2005). A multiscale measure for mixing. Physica D: Nonlinear Phenomena, 211, 23–46. DOI: 10.1016/j.physd.2005.07.017.

    Article  CAS  Google Scholar 

  • Michaelides, E. E. (2006). Particles, bubbles & drops: Their motion, heat and mass transfer. Hackensack, NJ, USA: World Scientific Publishing Corporation.

    Google Scholar 

  • Pacek, A. W., Aylianawati, & Nienow, A. W. (1999). Breakage of oil drops in Chemineer static mixers. Part I: Experiments and correlations. In Proceedings of the 3rd International Symposium on Mixing in Industrial Processes, 19–22 September 1999 (pp. 115–122). Osaka, Japan.

  • Patankar, S. V. (1980). Numerical heat transfer and fluid flow. Washington, DC, USA: Hemisphere Publishing Corporation.

    Google Scholar 

  • Podgórska, W. (2006). Modelling of high viscosity oil drop breakage process in intermittent turbulence. Chemical Engineering Science, 61, 2986–2993. DOI: 10.1016/j.ces.2005.10.048.

    Article  CAS  Google Scholar 

  • Pope, S. (2000). Turbulent flows. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Rahmani, R. K., Keith, T. G., & Ayasoufi, A. (2008). Numerical simulation of turbulent flow in an industrial helical static mixer. International Journal of Numerical Methods for Heat & Fluid Flow, 18, 675–696. DOI: 10.1108/09615530810885515.

    Article  Google Scholar 

  • Regner, M., Östergren, K., & Trägårdh, C. (2005). An improved numerical method of calculating the striation thinning in static mixers. Computers and Chemical Engineering, 30, 376–380. DOI: 10.1016/j.compchemeng.2005.09.006.

    Article  CAS  Google Scholar 

  • Regner, M., Östergren, K., & Trägårdh, C. (2006). Effects of geometry and flow rate on secondary flow and the mixing process in static mixers—a numerical study. Chemical Engineering Science, 61, 6133–6141. DOI: 10.1016/j.ces.2006.05.044.

    Article  CAS  Google Scholar 

  • Regner, M., Östergren, K., & Trägårdh, C. (2008). Influence of viscosity ratio on the mixing process in a static mixer: Numerical study. Industrial & Engineering Chemistry Research, 47, 3030–3036. DOI: 10.1021/ie0708071.

    Article  CAS  Google Scholar 

  • Sagaut, P. (2002). Large eddy simulation for incompressible flows. Berlin, Germany: Springer Verlag.

    Google Scholar 

  • Sheng, J., Meng, H., & Fox, R. O. (2000). A large eddy PIV method for turbulence dissipation rate estimation. Chemical Engineering Science, 55, 4423–4434. DOI: 10.1016/S0009-2509(00)00039-7.

    Article  CAS  Google Scholar 

  • Singh, M. K., Galaktionov, O. S., Meijer, H. E. H., & Andersen, P. D. (2009). A simplified approach to compute distribution matrices for the mapping method. Computers & Chemical Engineering, 33, 1354–1362. DOI: 10.1016/j.compchemeng. 2009.01.021.

    Article  CAS  Google Scholar 

  • Song, H.-S., & Han, S.-P. (2005). A general correlation for pressure drop in a Kenics static mixer. Chemical Engineering Science, 60, 5696–5704. DOI: 10.1016/j.ces.2005.04.084.

    Article  CAS  Google Scholar 

  • Spalart, P. R. (2000). Strategies for turbulence modelling and simulations. International Journal of Heat and Fluid Flow, 21, 252–263. DOI: 10.1016/S0142-727X(00)00007-2.

    Article  Google Scholar 

  • Spencer, R., & Wiley, R. (1951). The mixing of very viscous liquids. Journal of Colloid Science, 6, 133–145.

    Article  CAS  Google Scholar 

  • Streiff, F. A., Jaffer, S., & Schneider, G. (1999). The design and application of static mixer technology. In Proceedings of the 3rd International Symposium on Mixing in Industrial Processes, 19–22 September 1999 (pp.107–144). Osaka, Japan.

  • Szalai, E. S., & Muzzio, F. (2003). Fundamental approach to the design and optimization of static mixers. AIChE Journal, 49, 2687–2699. DOI: 10.1002/aic.690491103.

    Article  CAS  Google Scholar 

  • Tandiroglu, A., & Ayhan, T. (2006). Energy dissipation analysis of transient heat transfer for turbulent flow in a circular tube with baffle inserts. Applied Thermal Engineering, 26, 178–185. DOI: 10.1016/j.applthermaleng.2005.05.018.

    Article  CAS  Google Scholar 

  • Thakur, R. K., Vial, Ch., Nigam, K. D. P., Nauman, E. B., & Djelveh, G. (2003). Static mixers in the process industries: A review. Chemical Engineering Research & Design, 81, 787–826. DOI: 10.1205/026387603322302968.

    Article  CAS  Google Scholar 

  • Tsai, K., & Fox, R. O. (1996). Modeling the scalar dissipation rate for a turbulent series-parallel reaction. Chemical Engineering Science, 51, 1929–1938. DOI: 10.1016/0009-2509(96)00050-4.

    Article  CAS  Google Scholar 

  • van Wageningen, W. F. C., Kandhai, D., Mudde, R. F., & van den Akker, H. E. A. (2004). Dynamic flow in a Kenics static mixer: An assessment of various CFD methods. AIChE Journal, 50, 1684–1696. DOI: 10.1002/aic.10178.

    Article  CAS  Google Scholar 

  • Wegner, B., Maltsev, A., Schneider, C., Sadiki, A., Dreizler, A., & Janicka, J. (2004). Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiments. International Journal of Heat and Fluid Flow, 25, 528–536. DOI: 10.1016/j.ijheatfluidflow.2004.02.019.

    Article  Google Scholar 

  • Wilcox, D. (2006). Turbulence modelling for CFD (3rd ed.). La Cañada, CA, USA: DCW Industries.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdzislaw Jaworski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaworski, Z., Murasiewicz, H. LES and URANS modelling of turbulent liquid-liquid flow in a static mixer: Turbulent kinetic energy and turbulence dissipation rate. Chem. Pap. 64, 182–192 (2010). https://doi.org/10.2478/s11696-009-0106-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-009-0106-7

Keywords

Navigation