Skip to main content
Log in

Fuels obtained by thermal cracking of individual and mixed polymers

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Utilization of oils/waxes obtained from thermal cracking of individual LDPE (low density polyethylene), HDPE (high density polyethylene), LLDPE (linear low density polyethylene), PP (polypropylene), or cracking of mixed polymers PP/LDPE (1: 1 mass ratio), HDPE/LDPE/PP (1: 1: 1 mass ratio), HDPE/LDPE/LLDPE/PP (1: 1: 1: 1 mass ratio) for the production of automotive gasolines and diesel fuels is overviewed. Thermal cracking was carried out in a batch reactor at 450°C in the presence of nitrogen. The principal process products, gaseous and liquid hydrocarbon fractions, are similar to the refinery cracking products. Liquid cracking products are unstable due to the olefins content and their chemical composition and their properties strongly depend on the feed composition. Naphtha and diesel fractions were hydrogenated over a Pd/C catalyst. Bromine numbers of hydrogenated fractions decreased to values from 0.02 g to 6.9 g of Br2 per 100 g of the sample. Research octane numbers (RON) before the hydrogenation of naphtha fractions were in the range from 80.5 to 93.4. After the hydrogenation of naphtha fractions, RON decreased to values from 61.0 to 93.6. Diesel indexes (DI) for diesel fractions were in the range from 73.7 to 75.6. After the hydrogenation of diesel fractions, DI increased up to 104.9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguado, J., Serrano, D. P., & Escola, J. M. (2006). Catalytic upgrading of plastic wastes. In J. Scheirs and W. Kaminsky (Eds.), Feedstock recycling and pyrolysis of waste plastics (pp. 73–110). Chichester, UK: Wiley. DOI: 10.1002/0470021543.ch3.

    Chapter  Google Scholar 

  • Achilias, D. S., Roupakias, C., Megalokonomos, P., Lappas, A. A., & Antonakou, E. V. (2007). Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials, 149, 536–542. DOI: 10.1016/j.jhazmat.2007.06.076.

    Article  CAS  Google Scholar 

  • ASTM International (2007a). ASTM D1159 — 07 Standard test method for bromine numbers of petroleum distillates and commercial aliphatic olefins by electrometric titration. Retrieved October 22, 2009, from http://www.astm.org/Standards/D1159.htm. DOI: 10.1520/D1159-07.

  • ASTM International (2007b). ASTM D611 — 07 Standard test methods for aniline point and mixed aniline point of petroleum products and hydrocarbon solvents. Retrieved October 22, 2009, from http://www.astm.org/Standards/D611.htm. DOI: 10.1520/D0611-07.

  • ASTM International (2005). ASTM D1298 — 99(2005) Standard test method for density, relative density (specific gravity), or API gravity of crude petroleum and liquid petroleum products by hydrometer method. Retrieved October 22, 2009, from http://www.astm.org/Standards/D1298.htm. DOI: 10. 1520/D1298-99R05.

  • ASTM International (2004). ASTM D2710 — 99(2004)e1 Standard test method for bromine index of petroleum hydrocarbons by electrometric titration. Retrieved October 22, 2009, from http://www.astm.org/Standards/D2710.htm. DOI: 10.1520/D2710-99R04E01.

  • Blazsó, M. (2006). Composition of liquid fuels derived from the pyrolysis of plastics. In J. Scheirs and W. Kaminsky (Eds.), Feedstock recycling and pyrolysis of waste plastics (pp. 315–344). Chichester, UK: Wiley. DOI: 10.1002/0470021543.ch12.

    Chapter  Google Scholar 

  • Durand, J. P., Boscher, Y., Petroff, N., & Berthelin, M. (1987). Automatic gas chromatographic determination of gasoline components: Application to octane number determination. Journal of Chromatography A, 395, 229–240. DOI:10.1016/S0021-9673(01)94113-5.

    Article  CAS  Google Scholar 

  • Hájeková, E., & Bajus, M. (2005). Recycling of low-density polyethylene and polypropylene via copyrolysis of polyalkene oil/waxes with naphtha: product distribution and coke formation. Journal of Analytical and Applied Pyrolysis, 74, 270–281. DOI: 10.1016/j.jaap.2004.11.016.

    Article  Google Scholar 

  • Hájeková, E., Špodová, B. (2007). Separation and characterization of products from thermal cracking of individual and mixed polyalkenes. Chemical Papers, 61, 262–270. DOI: 10.2478/s11696-007-0031-6.

    Article  Google Scholar 

  • Horvat, N., & Ng, F. T. T. (1999). Tertiary polymer recycling: study of polyethylene thermolysis as a first step to synthetic diesel fuel. Fuel, 78, 459–470. DOI: 10.1016/S0016-2361(98)00158-6.

    Article  CAS  Google Scholar 

  • Kaminsky, W. (2008). Feedstock recycling of synthetic and natural rubber by pyrolysis in a fluidized bed. In J. A. González-Pérez and F. J. González-Vila (Eds.), Proceedings of the 18th International Symposium on Analytical and Applied Pyrolysis, 18–23 May 2008 (K-2, p. 36). Lanzarote, Canary Island, Spain.

    Google Scholar 

  • Kaminsky, W., & Hartmann, F. (2005). Simulation and experiments of polyethylene pyrolysis in a fluidized bed process. In au]M. Müller-Hagedorn and H. Bockhorn(Eds.), Feedstock recycling of plastics (pp. 73–88). Karlsruhe, Germany: Universitätsverlag Karlsruhe.

    Google Scholar 

  • Koç, A., Şimşek, E. H., & Bilgesü, A. Y. (2009). Oxidative thermal degradation of LDPE and the determination of some thermodynamic quantities. Journal of Analytical and Applied Pyrolysis, 85, 380–383. DOI: 10.1016/j.jaap.2008.11.031.

    Article  Google Scholar 

  • Koželuhová, M. (2007). Separation and analysis of products from thermal cracking of polymers. Diploma thesis, Slovak University of Technology, Bratislava, Slovak Republic.

    Google Scholar 

  • Marcilla, A., Beltrán, M. I., & Navarro, R. (2009). Evolution of products during the degradation of polyethylene in a batch reactor. Journal of Analytical and Applied Pyrolysis, 78, 14–21. DOI: 10.1016/j.jaap.2009.03.004.

    Article  Google Scholar 

  • Mastral, J. F., Martinez, S., Ceamanos, J., & Berrucco, C. (2008). Catalytic pyrolysis of high density polyethylene for maximum generation of the liquid fraction. In J. A. González-Pérez and F. J. González-Vila (Eds.), Proceedings of the 18th International Symposium on Analytical and Applied Pyrolysis, 18–23 May 2008 (P-65, p. 201). Lanzarote, Canary Island, Spain.

    Google Scholar 

  • Masuda, T., & Tago, T. (2006). Development of a process for the continuous conversion of waste plastics mixtures to fuel. In J. Scheirs and W. Kaminsky (Eds.), Feedstock recycling and pyrolysis of waste plastics (pp. 161–192). Chichester, UK: Wiley. DOI: 10.1002/0470021543.ch6.

    Chapter  Google Scholar 

  • Miskolczi, N. (2006). Kinetic model of the chemical and catalytic recycling of waste polyethylene into fuels. In J. Scheirs and W. Kaminsky (Eds.), Feedstock recycling and pyrolysis of waste plastics (pp. 225–247). Chichester, UK: Wiley. DOI:10.1002/0470021543.ch9.

    Chapter  Google Scholar 

  • Miskolczi, N., Angyal, A., Bartha, L., & Valkai, I. (2008). Converting of waste plastics into lighter hydrocarbons: The effect of the size increasing of process to the pyrolysis. In J. A. González-Pérez and F. J. González-Vila (Eds.), Proceedings of the 18th International Symposium on Analytical and Applied Pyrolysis, 18–23 May 2008 (P-80, p. 216). Lanzarote, Canary Island, Spain.

    Google Scholar 

  • Okuwaki, A., Yoshioka, T., Asai, M., Tachibana, H., Wakai, K., & Tada, K. (2006). The liquefaction of plastic containers and packaging in Japan. In: J. Scheirs and W. Kaminsky (Eds.), Feedstock recycling and pyrolysis of waste plastics (pp. 663–708). Chichester, UK: Wiley. DOI: 10.1002/0470021543.ch26.

    Chapter  Google Scholar 

  • Pasquini, C., Vidal de Aquino, E., das Virgens Reboucas, M., & Barbieri Gonzaga, F. (2007). Robust flow-batch coulometric/biamperometric titration system: Determination of bromine index and bromine number of petrochemicals. Analytica Chimica Acta, 600, 84–89. DOI:10.1016/j.aca.2006.12.039.

    Article  CAS  Google Scholar 

  • Pinto, F., Costa, P., Gulyurtlu, I., & Cabrita, I. (1999). Pyrolysis of plastic wastes. 1. Effect of plastic waste composition on product yield. Journal of Analytical and Applied Pyrolysis, 51, 39–55. DOI: 10.1016/S0165-2370(99)00007-8.

    Article  CAS  Google Scholar 

  • Ramadhas, A. S., Jayaraj, S., Muraleedharan, C., & Padmakumari, K. (2006). Artificial neural networks used for the prediction of the cetane number of biodiesel. Renewable Energy, 31, 2524–2533. DOI: 10.1016/j.renene.2006.01.009.

    Article  CAS  Google Scholar 

  • Scheirs, J. (2006). Overview of commercial pyrolysis processes for waste plastics. In J. Scheirs and W. Kaminsky (Eds.), Feedstock recycling and pyrolysis of waste plastics (pp. 384–433). Chichester, UK: Wiley. DOI: 10.1002/0470021543.ch15.

    Chapter  Google Scholar 

  • Slišková, M. (1999). Evaluation of octane number of gasolines. Bachelor thesis, Slovak University of Technology, Bratislava, Slovak Republic.

    Google Scholar 

  • Soják, L., Kubinec, R., Jurdáková, H., Hájeková, E., & Bajus, M. (2007). High resolution gas chromatographic-mass spectrometric analysis of polyethylene and polypropylene thermal cracking products. Journal of Analytical and Applied Pyrolysis, 78, 387–399. DOI: 10.1016/j.jaap.2006.09.012.

    Article  Google Scholar 

  • STN (1989). STN 656185 Ropné vyrobky. Stanovenie brómového čísla elektrometrickou metódou. Retrieved October 22, 2009, from http://eshop.normservis.cz/stn/656185/1.10. 1989.

  • STN (1985). STN 656180 Ropné vyrobky a uhľovodíkové rozpúšťadlá. Stanovenie anilínového bodu. Retrieved October 22, 2009, from http://eshop.normservis.cz/stn/656180/1.2.1985.

  • STN (1983). STN 656010 Ropa a ropné vyrobky. Metódy stanovenia hustoty. Retrieved October 22, 2009, from http://eshop.normservis.cz/stn/656010/1.8.1983.

  • The European Committee for Standardization (2004). The European Standard: Automotive fuels — Unleaded petrol — Requirements and test methods. EN 228. Brussels, Belgium.

  • Tukker, A. (2002). Plastic waste — feedstock recycling, chemical recycling and incineration. Rapra Review Reports 13(4), Report 148. Shawbury, UK: Rapra Technology Ltd.

    Google Scholar 

  • Walendziewski, J. (2002). Engine fuel derived from waste plastics by thermal treatment. Fuel, 81, 473–481. DOI:10.1016/S0016-2361(01)00118-1.

    Article  CAS  Google Scholar 

  • Wauquier, J.-P. (1995). Petroleum refining 1. Crude oil, petroleum products, process flowsheets (pp. 155). Paris, France: Éditions Technip.

    Google Scholar 

  • Walendziewski, J. (2005). Continuous flow cracking of waste plastics. Fuel Processing Technology, 86, 1265–1278. DOI:10.1016/j.fuproc.2004.12.004.

    Article  CAS  Google Scholar 

  • Wikipedia (2008). Bromine number. Retrieved November 21, 2001, from http://en.wikipedia.org/wiki/Bromine_number

  • Williams, P. T. (2006). Yield and composition of gases and oils/waxes from the feedstock recycling of waste plastic. In J. Scheirs and W. Kaminsky (Eds.), Feedstock recycling and pyrolysis of waste plastics (pp. 285–313). Chichester, UK: Wiley. DOI: 10.1002/0470021543.ch11.

    Chapter  Google Scholar 

  • Yuan, X. (2006). Converting waste plastics into liquid fuel by pyrolysis: Developments in China. In J. Scheirs and W. Kaminsky (Eds.), Feedstock recycling and pyrolysis of waste plastics (pp. 729–755). Chichester, UK: Wiley. DOI:10.1002/0470021543.ch28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Božena Mlynková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mlynková, B., Bajus, M., Hájeková, E. et al. Fuels obtained by thermal cracking of individual and mixed polymers. Chem. Pap. 64, 15–24 (2010). https://doi.org/10.2478/s11696-009-0102-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-009-0102-y

Keywords

Navigation