Skip to main content
Log in

Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Correct prediction of the structure and energetics along the reaction pathway of the formation or dissociation of the glycosidic bond in sugar phosphates is crucial for the understanding of catalytic mechanism and for the determination of transition state structures of sugar-phosphate processing enzymes. The performance of seven density functional theory (DFT) methods (BLYP, B3LYP, MPW1PW91, MPW1K, MPWB1K, M05 and M05-2X) and two wave function methods (HF and MP2) was tested using four structural models with the activated sugar-phosphate α-glycosidic linkage. The models were chosen based on the crystal structure of the retaining glycosyltransferase LgtC complex with methyl α-d-galactopyranose diphosphate and its 2-fluoro derivative. Results of the MP2 method were used as a benchmark for the other methods. Two structural trends were observed in the calculations: predicted length of the activated C1-O1 glycosidic bond of 1.49–1.63 Å was significantly larger than values of a standard C1-O1 glycosidic bond in crystal structures of carbohydrates (1.39–1.48 Å), and the calculated value depended on the DFT method used. The MPW1K, M05 and M05-2X functionals provided results in closest agreement with those from the MP2 method, the difference being less than 0.02 Å in the calculated glycosidic bond lengths. On the contrary, the BLYP and B3LYP functionals failed to predict sugar diphosphate in the (-sc) conformation as a stable structure. Instead, the only stationary points localized along the C1-O1 dissociation coordinate were oxocarbenium ions at the distance of approximately 2.8 Å. The M05-2X, MPW1K and MPWB1K functionals gave the most reasonable prediction of the thermochemical kinetic parameters, where the formation of the oxocarbenium ion has a slightly endothermic character (0.4–1.7 kJ mol−1) with an activation barrier of 7.9–9.2 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamo, C., & Barone, V. (1998). Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. Journal of Chemical Physics, 108, 664–675. DOI: 10.1063/1.475428.

    Article  CAS  Google Scholar 

  • André, I., Tvaroška, I., & Carver, J. P. (2000). Effects of the complexation by the Mg2+ cation on the stereochemistry of the sugar-diphosphate linkage. Ab initio modeling on nucleotide-sugars. Journal of Physical Chemistry A, 104, 4609–4617. DOI: 10.1021/jp000028x.

    Article  Google Scholar 

  • André, I., Tvaroška, I., & Carver, J. P. (2003). On the reaction pathways and determination of transition-state structures for retaining α-galactosyltransferases. Carbohydrate Research, 338, 865–877. DOI: 10.1016/S0008-6215(03)00050-8.

    Article  Google Scholar 

  • Becke, A. D. (1993). Density-functional thermochemistry. 3. The role of exact exchange. Journal of Chemical Physics, 98, 5648–5652. DOI: 10.1063/1.464913.

    Article  CAS  Google Scholar 

  • Biarnés, X., Ardèvol, A., Planas, A., Rovira, C., Laio, A., & Parrinello, M. (2007). The conformational free energy landscape of β-d-glucopyranose. Implications for substrate preactivation in β-glucoside hydrolases. Journal of the American Chemical Society, 129, 10686–10693 DOI: 10.1021/ja068411o.

    Article  Google Scholar 

  • Biarnés, X., Nieto, J., Planas, A., & Rovira, C. (2006). Substrate distortion in the Michaelis complex of Bacillus 1,3-1,4-β-glucanase: Insight from first principles molecular dynamics simulations. Journal of Biological Chemistry, 281, 1432–1441. DOI: 10.1074/jbc.M507643200.

    Article  Google Scholar 

  • Bottoni, A., Miscione, G. P., & De Vivo, M. (2005). A theoretical DFT investigation of the lysozyme mechanism: Computational evidence for a covalent intermediate pathway. Proteins-Structure Function and Bioinformatics, 59, 118–130. DOI: 10.1002/prot.20396.

    Article  CAS  Google Scholar 

  • Brooks, S. A., Dwek, M. V., & Schumacher, U. (2002). Functional & molecular glycobiology (1st ed.) (pp. 287–327). Oxford: BIOS Scientific Publishers Ltd.

    Google Scholar 

  • Coskuner, O. (2007). Preferred conformation of the glycosidic linkage of methyl β-mannose. Journal of Chemical Physics, 127, 015101. DOI: 10.1063/1.2747238.

  • Csonka, G. I. (2002). Proper basis set for quantum mechanical studies of potential energy surfaces of carbohydrates. Journal of Molecular Structure: THEOCHEM, 584, 1–4. DOI: 10.1016/S0166-1280(02)00096-9.

    Article  CAS  Google Scholar 

  • Dkhissi, A., & Blossey, R. (2007). Performance of DFT/MPWB1K for stacking and H-bonding interactions. Chemical Physics Letters, 439, 35–39. DOI: 10.1016/j.cplett.2007.03.065.

    Article  CAS  Google Scholar 

  • Fabian, W. M. F. (2007). Metal binding induced conformational interconversions in methyl β-d-xylopyranoside. Theoretical Chemistry Accounts, 117, 223–229. DOI: 10.1007/s00214-006-0130-4.

    Article  CAS  Google Scholar 

  • Fois, E. S., Penman, J. I., & Madden, P. A. (1993). Self-interaction corrected density functionals and the structure of metal clusters. Journal of Chemical Physics, 98, 6352–6360. DOI: 10.1063/1.464828.

    Article  CAS  Google Scholar 

  • Frisch, M. J., Headgordon, M., & Pople, J. A. (1990a). A direct MP2 gradient-method. Chemical Physics Letters, 166, 275–280. DOI: 10.1016/0009-2614(90)80029-D.

    Article  CAS  Google Scholar 

  • Frisch, M. J., Headgordon, M., & Pople, J. A. (1990b). Semidirect algorithms for the MP2 energy and gradient. Chemical Physics Letters, 166, 281–289. DOI: 10.1016/0009-2614(90)80030-H.

    Article  CAS  Google Scholar 

  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Jr., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J. A. (2005). Gaussian 03, Revision D.02 and E.01 [computer software]. Wallingford, CT: Gaussian, Inc.

    Google Scholar 

  • Gibson, R. P., Tarling, C. A., Roberts, S., Withers, S. G., & Davies, G. J. (2004). The donor subsite of trehalose-6-phosphate synthase: Binary complexes with UDP-glucose and UDP-2-deoxy-2-fluoro-glucose at 2 Å resolution. Journal of Biological Chemistry, 279, 1950–1955. DOI: 10.1074/jbc.M307643200.

    Article  CAS  Google Scholar 

  • Hohenstein, E. G., Chill, S. T., & Sherrill, C. D. (2008). Assessment of the performance of the M05-2X and M06-2X exchange-correlation functionals for noncovalent interactions in biomolecules. Journal of Chemical Theory and Computation, 4, 1996–2000. DOI: 10.1021/ct800308k.

    Article  CAS  Google Scholar 

  • Hricovíni, M., Scholtzová, E., & Bízik, F. (2007). B3LYP/6-311++G** study of structure and spin-spin coupling constant in heparin disaccharide. Carbohydrate Research, 342, 1350–1356. DOI: 10.1016/j.carres.2007.03.020.

    Article  Google Scholar 

  • Ikeda, Y., & Takahashi, M. (2007). Glycosyltransferases and glycosidases: Enzyme mechanisms. In J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, & A. G. J. Voragen (Eds.), Comprehensive glycosciense (Vol. 3, pp. 115–127). Oxford: Elsevier.

    Google Scholar 

  • Ionescu, A. R., Whitfield, D. M., Zgierski, M. Z., & Nukada, T. (2006). Investigations into the role of oxocarbenium ions in glycosylation reactions by ab initio molecular dynamics. Carbohydrate Research, 341, 2912–2920. DOI: 10.1016/j.carres.2006.09.027.

    Article  CAS  Google Scholar 

  • Johnson, B. G., Gonzales, C. A., Gill, P. M. W., & Pople, J. A. (1994). A density-functional study of the simplest hydrogen abstraction reaction. Effect of self-interaction correction. Chemical Physics Letters, 221, 100–108. DOI: 10.1016/0009-2614(94)87024-1.

    Article  CAS  Google Scholar 

  • Jones, P. G., & Kirby, A. J. (1979). Linear relationship between bond length and reactivity. Journal of Chemical Society, Chemical Communications, 1979, 288–289. DOI: 10.1039/C39790000288.

    Article  Google Scholar 

  • Jones, P. G., & Kirby, J. (1982). Evidence from crystal structures for an incipient fragmentation reaction. Journal of Chemical Society, Chemical Communications, 1982, 1365–1366. DOI: 10.1039/C39820001365.

    Article  Google Scholar 

  • Karamat, S., & Fabian, W. M. F. (2006). Computational study of the conformational space of methyl 2,4-diacetyl-β-d-xylopyranoside: 4C1 and 1C4 chairs, skew-boats (2SO, 1S3), and B3,O boat forms. Journal of Physical Chemistry A, 110, 7477–7484. DOI: 10.1021/jp061024g.

    Article  CAS  Google Scholar 

  • Kozmon, S., & Tvaroška, I. (2006). Catalytic mechanism of glycosyltransferases: Hybrid quantum mechanical/molecular mechanical study of inverting N-acetylglucosaminyltransferase I. Journal of American Chemical Society, 128, 16921–16927. DOI: 10.1021/ja065944o.

    Article  CAS  Google Scholar 

  • Lairson, L. L., Chiu, C. P. C., Ly, H. D., He, S. M., Wakarchuk, W. W., Strynadka, N. C. J., & Withers, S. G. (2004). Intermediate trapping on a mutant retaining α-galactosyltransferase identifies an unexpected aspartate residue. Journal of Biological Chemistry, 279 28339–28344. DOI: 10.1074/jbc.M400451200.

    Article  CAS  Google Scholar 

  • Lairson, L. L., Henrissat, B., Davies, G. J., & Withers, S. G. (2008). Glycosyltransferases: Structures, functions, and mechanism. Annual Reviews of Biochemistry, 77, 521–555. DOI: 10.1146/annurev.biochem.76.061005.092322.

    Article  CAS  Google Scholar 

  • Lee, C. T., Yang, W. T., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Physical Review B, 37, 785–789. DOI: 10.1103/PhysRevB.37.785.

    Article  CAS  Google Scholar 

  • Lii, J. H., Ma, B. Y., & Allinger, N. L. (1999). Importance of selecting proper basis set in quantum mechanical studies of potential energy surfaces of carbohydrates. Journal of Computational Chemistry, 20, 1593–1603. DOI: 10.1002/(SICI)1096-987X(19991130)20:15〈1593::AID-JCC1〉3.0.CO;2-A.

    Article  CAS  Google Scholar 

  • Lynch, B. J., Fast, P. L., Harris, M., & Truhlar, D. G. (2000). Adiabatic connection for kinetics. Journal of Physical Chemistry A, 104, 4811–4815. DOI: 10.1021/jp000497z.

    Article  CAS  Google Scholar 

  • Miehlich, B., Savin, A., Stoll, H., & Preuss, H. (1989). Results obtained with the correlation-energy density functionals of Becke and Lee, Yang and Parr. Chemical Physics Letters, 157, 200–206. DOI: 10.1016/0009-2614(89)87234-3.

    Article  CAS  Google Scholar 

  • Mohr, M., Bryce, R. A., & Hillier, I. H. (2001). Quantum chemical studies of carbohydrate reactivity: Acid catalyzed ring opening reactions. Journal of Physical Chemistry A, 105, 8216–8222. DOI: 10.1021/jp010901+.

    Article  CAS  Google Scholar 

  • Møller, C., & Plesset, M. S. (1934). Note on an approximation treatment for many-electron systems. Physical Review, 46, 618–622. DOI: 10.1103/PhysRev.46.618.

    Article  Google Scholar 

  • Momany, F. A., Appell, M., Willett, J. L., Schnupf, U., & Bosma, W. B. (2006). DFT study of α- and β-d-galactopyranose at the B3LYP/6-311++G** level of theory. Carbohydrate Research, 341, 525–537. DOI: 10.1016/j.carres.2005.12.006.

    Article  CAS  Google Scholar 

  • Momany, F. A., Schnupf, U., Willett, J. L., & Bosma, W. B. (2007). DFT study of α-maltose: influence of hydroxyl orientations on the glycosidic bond. Structural Chemistry, 18, 611–632. DOI: 10.1007/s11224-007-9191-9.

    Article  CAS  Google Scholar 

  • Nyerges, B., & Kovács, A. (2005). Density functional study of the conformational space of 4C1 d-glucuronic acid. Journal of Physical Chemistry A, 109, 892–897. DOI: 10.1021/jp047451g.

    Article  CAS  Google Scholar 

  • Perdew, J. P., Burke, K., & Wang, Y. (1996). Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Physical Review B, 54, 16533–16539. DOI: 10.1103/PhysRevB.54.16533.

    Article  CAS  Google Scholar 

  • Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., & Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces — applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46, 6671–6687. DOI: 10.1103/Phys-RevB.46.6671.

    Article  CAS  Google Scholar 

  • Persson, K., Ly, H. D., Dieckelmann, M., Wakarchuk, W. W., Withers, S. G., & Strynadka, N. C. J. (2001). Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs. Nature Structural Biology, 8, 166–175. DOI: 10.1038/84168.

    Article  CAS  Google Scholar 

  • Petrova, P., Koča, J., & Imberty, A. (1999). Potential energy hypersurfaces of nucleotide sugars: Ab initio calculations, force-field parametrization, and exploration of the flexibility. Journal of the American Chemical Society, 121, 5535–5547. DOI: 10.1021/ja983854g.

    Article  CAS  Google Scholar 

  • Raab, M., Kozmon, S., & Tvaroška, I. (2005). Potential transition-state analogs for glycosyltransferases. Design and DFT calculations of conformational behavior. Carbohydrate Research, 340, 1051–1057. DOI: 10.1016/j.carres.2005.01.041.

    Article  CAS  Google Scholar 

  • Roothaan, C. C. J. (1951). New developments in molecular orbital theory. Reviews of Modern Physics, 23, 69–76. DOI: 10.1103/RevModPhys.23.69.

    Article  CAS  Google Scholar 

  • Salzner, U., & von Ragué Schleyer, P. (1994). Ab initio examination of anomeric effects in tetrahydropyrans, 1,3-dioxanes, and glucose. Journal of Organic Chemistry, 59, 2138–2155. DOI: 10.1021/jo00087a035.

    Article  CAS  Google Scholar 

  • Sarkar, M., & Schachter, H. (2001). Cloning and expression of Drosophila melanogaster UDP-GlcNAc:α-3-d-mannoside β1,2-N-acetylglucosaminyltransferase I. Biological Chemistry, 382, 209–217. DOI: 10.1515/BC.2001.028.

    Article  CAS  Google Scholar 

  • Schneider, B., Kabelac, M., & Hobza, P. (1996). Geometry of the phosphate group and its interactions with metal cations in crystals and ab initio calculations. Journal of the American Chemical Society, 118, 12207–12217. DOI: 10.1021/ja9621152.

    Article  CAS  Google Scholar 

  • Schultz, N. E., Zhao, Y., & Truhlar, D. G. (2008). Benchmarking approximate density functional theory for s/d excitation energies in 3d transition metal cations. Journal of Computational Chemistry, 29, 185–189. DOI: 10.1002/jcc.20717.

    Article  CAS  Google Scholar 

  • Stubbs, J. M., & Marx, D. (2003). Glycosidic bond formation in aqueous solution: On the oxocarbenium intermediate. Journal of the American Chemical Society, 125, 10960–10962. DOI: 10.1021/ja035600n.

    Article  CAS  Google Scholar 

  • Sugawara, Y., & Iwasaki, H. (1984). Structure of disodium uridine diphosphoglucose dihydrate, C15H22N2O17P 2−2 .2Na+.2H2O, and refinement of dipotassium glucose 1-phosphate dihydrate, C6H11O9P2−.2K+.2H2O (monoclinic form). Acta Crystallographica Section C, 40, 389–393. DOI: 10.1107/S010827018400425X.

    Google Scholar 

  • Tvaroška, I. (2005). Structural insights into the catalytic mechanism and transition state of glycosyltransferases using ab initio molecular modeling. Trends in Glycoscience and Glycotechnology, 17, 177–190.

    Google Scholar 

  • Tvaroška, I., André, I., & Carver, J. P. (1999). Ab initio molecular orbital study of the conformational behavior of the sugar-phosphate linkage. Toward an understanding of the catalytic mechanism of glycosyltransferases. Journal of Physical Chemistry B, 103, 2560–2569. DOI: 10.1021/jp984226o.

    Article  Google Scholar 

  • Tvaroška, I., André, I., & Carver, J. P. (2000). Ab initio molecular orbital study of the catalytic mechanism of glycosyltransferases: Description of reaction pathways and determination of transition-state structures for inverting N-acetylglucosaminyltransferases. Journal of the American Chemical Society, 122, 8762–8776. DOI: 10.1021/ja001525u.

    Article  Google Scholar 

  • Tvaroška, I., & Carver, J. P. (1994a). Ab-initio molecular-orbital calculation of carbohydrate model compounds. 2. Conformational analysis of axial and equatorial 2-methoxytetrahydropyrans. Journal of Physical Chemistry, 98, 9477–9485. DOI: 10.1021/j100089a020.

    Article  Google Scholar 

  • Tvaroška, I., & Carver, J. P. (1994b). Ab-initio molecular-orbital calculation on carbohydrate model compounds. 1. The anomeric effect in fluoro and chloro derivatives of tetrahydropyran. Journal of Physical Chemistry, 98, 6452–6458. DOI: 10.1021/j100077a006.

    Article  Google Scholar 

  • Tvaroška, I., & Carver, J. P. (1998). The anomeric and exoanomeric effects of a hydroxyl group and the stereochemistry of the hemiacetal linkage. Carbohydrate Research, 309, 1–9. DOI: 10.1016/S0008-6215(98)00114-1.

    Article  Google Scholar 

  • Tvaroška, I., Taravel, F. R., Utille, J. P., & Carver, J. P. (2002). Quantum mechanical and NMR spectroscopy studies on the conformations of the hydroxymethyl and methoxymethyl groups in aldohexosides. Carbohydrate Research, 337, 353–367. DOI: 10.1016/S0008-6215(01)00315-9.

    Article  Google Scholar 

  • Whitfield, D. M. (2007). DFT studies of the ionization of alpha and beta glycopyranosyl donors. Carbohydrate Research, 342, 1726–1740. DOI: 10.1016/j.carres.2007.05.012.

    Article  CAS  Google Scholar 

  • Withers, S. G., Rupitz, K., Street, I. P. (1988). 2-Deoxy-2-fluoro-d-glycosyl fluorides. A new class of specific mechanismbased glysosidase inhibitors. Journal of Biological Chemistry, 263, 7929–7932.

    CAS  Google Scholar 

  • Zea, C. J., Camci-Unal, G., & Pohl, N. L. (2008). Thermodynamics of binding of divalent magnesium and manganese to uridine phosphates: implications for diabetes-related hypomagnesaemia and carbohydrate biocatalysis. Chemistry Central Journal, 2, 15. DOI: 10.1186/1752-153X-2-15.

    Article  Google Scholar 

  • Zhang, Y., & Yang, W. (1998). A challenge for density functionals: Self-interaction error increases for systems with a noninteger number of electrons. Journal of Chemical Physics, 109, 2604–2608. DOI: 10.1063/1.476859.

    Article  CAS  Google Scholar 

  • Zhao, Y., Schultz, N. E., & Truhlar, D. G. (2005). Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. Journal of Chemical Physics, 123, 161103. DOI: 10.1063/1.2126975.

  • Zhao, Y., Schultz, N. E., & Truhlar, D. G. (2006). Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. Journal of Chemical Theory and Computation, 2, 364–382. DOI: 10.1021/ct0502763.

    Article  Google Scholar 

  • Zhao, Y., & Truhlar, D. G. (2004). Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: The MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. Journal of Physical Chemistry A, 108 6908–6918. DOI: 10.1021/jp048147q.

    Article  CAS  Google Scholar 

  • Zhao, Y., & Truhlar, D. G. (2008a). Density functionals with broad applicability in chemistry. Accounts of Chemical Research, 41, 157–167. DOI: 10.1021/ar700111a.

    Article  CAS  Google Scholar 

  • Zhao, Y., & Truhlar, D. G. (2008b). Exploring the limit of accuracy of the global hybrid meta density functional for main-group thermochemistry, kinetics, and noncovalent interactions. Journal of Chemical Theory and Computation, 4, 1849–1868. DOI: 10.1021/ct800246v.

    Article  CAS  Google Scholar 

  • Zheng, J., Zhao, Y., & Truhlar, D. G. (2007). Representative benchmark suites for barrier heights of diverse reaction types and assessment of electronic structure methods for thermochemical kinetics. Journal of Chemical Theory and Computation, 3, 569–582. DOI: 10.1021/ct600281g.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juraj Kóňa.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kóňa, J., Tvaroška, I. Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates. Chem. Pap. 63, 598–607 (2009). https://doi.org/10.2478/s11696-009-0060-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-009-0060-4

Keywords

Navigation