Skip to main content
Log in

Magnetic nano- and microparticles in biotechnology

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Both synthetic and biologically produced magnetic nano- and microparticles exhibit several types of responses to external magnetic field which have been already employed in various areas of biosciences, biotechnology, medicine, environmental technology, etc. This short review shows selected important biotechnological applications of magnetic particles, and the biological processes leading to biogenic magnetic particles formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akgöl, S., Kaçar, Y., Denizli, A., & Arica, M. Y. (2001). Hydrolysis of sucrose by invertase immobilized onto novel magnetic polyvinylalcohol microspheres. Food Chemistry, 74, 281–288. DOI: 10.1016/S0308-8146(01)00150-9.

    Article  Google Scholar 

  • Antequera, Y. S., Mykhaylyk, O., Hammerschmid, E., & Plank, C. (2007). Magselectofection: Combined magnetic cell separation and magnetofection. Human Gene Therapy, 18, 1048–1048. DOI: 10.1089/hum.2007.1029.

    Google Scholar 

  • Arica, M. Y., Yavuz, H., Patir, S., & Denizli, A. (2000). Immobilization of glucoamylase onto spacer-arm attached magnetic poly(methylmethacrylate) microspheres: characterization and application to a continuous flow reactor. Journal of Molecular Catalysis B: Enzymatic, 11, 127–138. DOI: 10.1016/S1381-1177(00)00223-X.

    Article  CAS  Google Scholar 

  • Bahar, T., & Celebi, S. S. (1998). Characterization of glucoamylase immobilized on magnetic poly(styrene) particles. Enzyme and Microbial Technology, 23, 301–304. DOI: 10.1016/S0141-0229(98)00048-9.

    Article  CAS  Google Scholar 

  • Bazylinski, D. A., Frankel, R. B., & Konhauser, K. O. (2007). Modes of biomineralization of magnetite by microbes. Geomicrobiology Journal, 24, 465–475. DOI: 10.1080/01490450 701572259.

    CAS  Google Scholar 

  • Bazylinski, D. A., & Schübbe, S. (2007). Controlled biomineralization by and applications of magnetotactic bacteria. Advances in Applied Microbiology, 62, 21–62. DOI: 10.1016/S0065-2164(07)62002-4.

    Article  CAS  Google Scholar 

  • Berensmeier, S. (2006). Magnetic particles for the separation and purification of nucleic acids. Applied Microbiology and Biotechnology, 73, 495–504. DOI: 10.1007/s00253-006-0675-0.

    Article  CAS  Google Scholar 

  • Bharde, A., Rautaray, D., Bansal, V., Ahmad, A., Sarkar, I., Yusuf, S. M., Sanyal, M., & Sastry, M. (2006). Extracellular biosynthesis of magnetite using fungi. Small, 2, 135–141. DOI: 10.1002/smll.200500180.

    Article  CAS  Google Scholar 

  • Bilkova, Z., Slovakova, M., Lycka, A., Horak, D., Lenfeld, J., Turkova, J., & Churacek, J. (2002). Oriented immobilization of galactose oxidase to bead and magnetic bead cellulose and poly(HEMA-co-EDMA) and magnetic poly(HEMA-co-EDMA) microspheres. Journal of Chromatography B, 770, 25–34. DOI: 10.1016/S0378-4347(01)00439-X.

    Article  CAS  Google Scholar 

  • Bruno, L. M., Coelho, J. S., Melo, E. H. M., & Lima, J. L. (2005). Characterization of Mucor miehei lipase immobilized on polysiloxane-polyvinyl alcohol magnetic particles. World Journal of Microbiology & Biotechnology, 21, 189–192. DOI: 10.1007/s11274-004-3321-y.

    Article  CAS  Google Scholar 

  • Coleman, D. J., Chick, K. E., & Nye, K. J. (1995). An evaluation of immunomagnetic separation for the detection of salmonellas in raw chicken carcasses. Letters in Applied Microbiology, 21, 152–154. DOI: 10.1111/j.1472-765X.1995.tb01029.x.

    Article  CAS  Google Scholar 

  • De Cuyper, M., De Meulenaer, B., Van der Meeren, P., & Vanderdeelen, J. (1995). Enzymatic activity of cytochrome c-oxidase inserted into magnetoliposomes differing in surface charge density. Biocatalysis and Biotransformation, 13, 77–87. DOI: 10.3109/10242429509015214.

    Article  Google Scholar 

  • Demirel, D., Ozdural, A. R., & Mutlu, M. (2004). Performance of immobilized Pectinex Ultra SP-L on magnetic duolitepolystyrene composite particles — Part 1: A batch reactor study. Journal of Food Engineering, 64, 417–421. DOI: 10.1016/j.jfoodeng.2003.09.018.

    Article  Google Scholar 

  • Duffy, G., Sheridan, J. J., Hofstra, H., McDowall, D. A., & Blair, I. S. (1997). A comparison of immunomagnetic and surface adhesion immunofluorescent techniques for the rapid detection of Listeria monocytogenes and Listeria innocua in meat. Letters in Applied Microbiology, 24, 445–450. DOI: 10.1046/j.1472-765X.1997.00139.x.

    Article  CAS  Google Scholar 

  • Dunnill, P., & Lilly, M. D. (1974). Purification of enzymes using magnetic bio-affinity materials. Biotechnology and Bioengineering, 16, 987–990. DOI: 10.1002/bit.260160710.

    Article  CAS  Google Scholar 

  • Dyal, A., Loos, K., Noto, M., Chang, S. W., Spagnoli, C., Shafi, K. V. P. M., Ulman, A., Cowman, M., & Gross, R. A. (2003). Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. Journal of the American Chemical Society, 125, 1684–1685. DOI: 10.1021/ja021223n.

    Article  CAS  Google Scholar 

  • Ennis, M. P., & Wisdom, G. B. (1991). A magnetizable solid phase for enzyme extraction. Applied Biochemistry and Biotechnology, 30, 155–164. DOI: 10.1007/BF02921683.

    Article  CAS  Google Scholar 

  • Franzreb, M., Siemann-Herzberg, M., Hobley, T. J., & Thomas, O. R. T. (2006). Protein purification using magnetic adsorbent particles. Applied Microbiology and Biotechnology, 70, 505–516. DOI: 10.1007/s00253-006-0344-3.

    Article  CAS  Google Scholar 

  • Grant, I. R., Pope, C. M., O’Riordan, L. M., Ball, H. J., & Rowe, M. T. (2000). Improved detection of Mycobacterium avium subsp. paratuberculosis in milk by immunomagnetic PCR. Veterinary Microbiology, 77, 369–378. DOI: 10.1016/S0378-1135(00)00322-9.

    Article  CAS  Google Scholar 

  • Guo, Z., Bai, S., & Sun, Y. (2003). Preparation and characterization of immobilized lipase on magnetic hydrophobic microspheres. Enzyme and Microbial Technology, 32, 776–782. DOI: 10.1016/S0141-0229(03)00051-6.

    CAS  Google Scholar 

  • Hendrix, P. G., Hoylaerts, M. F., Nouwen, E. J., Van de Voorde, A., & De Broe, M. E. (1992). Magnetic beads in suspension enable a rapid and sensitive immunodetection of human placental alkaline phosphatase. European Journal of Clinical Chemistry and Clinical Biochemistry, 30, 343–347.

    CAS  Google Scholar 

  • Hirschbein, B. L., & Whitesides, G. M. (1982). Affinity separation of enzymes from mixtures containing suspended solids: Comparisons of magnetic and nonmagnetic techniques. Applied Biochemistry and Biotechnology, 7, 157–176. DOI: 10.1007/BF02798294.

    Article  CAS  Google Scholar 

  • Horak, D., Rittich, B., Safar, J., Spanova, A., Lenfeld, J., & Benes, M. J. (2001). Properties of RNase A immobilized on magnetic poly(2-hydroxyethyl methacrylate) microspheres. Biotechnology Progress, 17, 447–452. DOI: 10.1021/bp0100171.

    Article  CAS  Google Scholar 

  • Hubbuch, J. J., & Thomas, O. R. T. (2002). High-gradient magnetic affinity separation of trypsin from porcine pancreatin. Biotechnology and Bioengineering, 79, 301–313. DOI: 10.1002/bit.10285.

    Article  CAS  Google Scholar 

  • Chapman, P. A., & Cudjoe, K. S. (2001). Evaluation of Beadretriever™, an automated system for concentration of Escherichia coli O157 from enrichment cultures by immunomagnetic separation. Journal of Rapid Methods and Automation in Microbiology, 9, 203–214. DOI: 10.1111/j.1745-4581.2001.tb00243.x.

    Article  Google Scholar 

  • Chapman, P. A., Ellin, M., & Ashton, R. (2001). A comparison of immunomagnetic separation and culture, RevealTM and VIP™ for the detection of E. coli O157 in enrichment cultures of naturally-contaminated raw beef, lamb and mixed meat products. Letters in Applied Microbiology, 32, 171–175. DOI: 10.1046/j.1472-765x.2001.00883.x.

    Article  CAS  Google Scholar 

  • Inada, Y., Matsuswma, A., Kodera, Y., & Nishimura, H. (1990). Polyethylene glycol (PEG)-protein conjugates: Application to biomedical and biotechnological processes. Journal of Bioactive and Compatible Polymers, 5, 343–364. DOI: 10.1177/088391159000500309.

    Article  CAS  Google Scholar 

  • Jang, K.-H., Song, K.-B., Park, B.-S., Kim, C. H., Chung, B. H., Choue, R. W., Lee, K. S., Lee, C., Chun, U.-H., & Rhee, S. K. (2001). Levan production by use of the recombinant levansucrase immobilized on titanium-activated magnetite. Process Biochemistry, 37, 339–343. DOI: 10.1016/S0032-9592(01)00215-1.

    Article  CAS  Google Scholar 

  • Karpíšková, R. & Holasová, M. (1999). The use of immunomagnetic separation in detection of Salmonella and Listeria from foodstuffs. Veterinární Medicína, 44, 225–228. (in Czech)

    Google Scholar 

  • Knight, K., Pimentel, M. D., de Morais, M. M. C., Ledingham, W. M., de Lima Filho, J. L., & Maia, M. D. (2000). Immobilization of lipase from Fusarium solani FS1. Brazilian Journal of Microbiology, 31, 220–222. DOI: 10.1590/S1517-83822000000300013.

    Article  CAS  Google Scholar 

  • Lamoureux, M., MacKay, A., Messier, S., Fliss, I., Blais, B. W., Holley, R. A., & Simard, R. E. (1997). Detection of Campylobacter jejuni in food and poultry viscera using immunomagnetic separation and microtitre hybridization. Journal of Applied Microbiology, 83, 641–651. DOI: 10.1046/j.1365-2672.1997.00273.x.

    Article  CAS  Google Scholar 

  • Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L. V., & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 108, 2064–2110. DOI: 10.1021/cr068445e.

    Article  CAS  Google Scholar 

  • Liao, M. H., & Chen, D. H. (2001). Immobilization of yeast alcohol dehydrogenase on magnetic nanoparticles for improving its stability. Biotechnology Letters, 23, 1723–1727. DOI: 10.1023/A:1012485221802.

    Article  CAS  Google Scholar 

  • Matsunaga, T., Okamura, Y., & Tanaka, T. (2004). Biotechnological application of nano-scale engineered bacterial magnetic particles. Journal of Materials Chemistry, 14, 2099–2105. DOI: 10.1039/b404844j.

    Article  CAS  Google Scholar 

  • Megens, M., & Prins, M. (2005). Magnetic biochips: a new option for sensitive diagnostics. Journal of Magnetism and Magnetic Materials, 293, 702–708. DOI: 10.1016/j.jmmm.2005.02.046.

    Article  CAS  Google Scholar 

  • Meyer, A., Hansen, D. B., Gomes, C. S. G., Hobley, T. J., Thomas, O. R. T., & Franzreb, M. (2005). Demonstration of a strategy for product purification by high-gradient magnetic fishing: Recovery of superoxide dismutase from unconditioned whey. Biotechnology Progress, 21, 244–254. DOI: 10.1021/bp049656c.

    Article  CAS  Google Scholar 

  • Mosbach, K., & Andersson, L. (1977). Magnetic ferrofluids for preparation of magnetic polymers and their application in affinity chromatography. Nature, 270, 259–261. DOI: 10.1038/270259a0.

    Article  CAS  Google Scholar 

  • Mosiniewicz-Szablewska, E., Safarikova, M., & Safarik, I. (2007). Magnetic studies of ferrofluid-modified spruce sawdust. Journal of Physics D: Applied Physics, 40, 6490–6496. DOI: 10.1088/0022-3727/40/21/003.

    Article  CAS  Google Scholar 

  • Nishiya, Y., Hibi, T., & Oda, J. L. (2002). A purification method of the diagnostic enzyme Bacillus uricase using magnetic beads and non-specific protease. Protein Expression and Purification, 25, 426–429. DOI: 10.1016/S1046-5928(02)00022-0.

    Article  CAS  Google Scholar 

  • Odabasi, M., & Denizli, A. (2004). Cibacron blue F3GA incorporated magnetic poly(2-hydroxyethyl methacrylate) beads for lysozyme adsorption. Journal of Applied Polymer Science, 93, 719–725. DOI 10.1002/app.20485.

    Article  CAS  Google Scholar 

  • Olsvik, O., Popovic, T., Skjerve, E., Cudjoe, K. S., Hornes, E., Ugelstad, J., & Uhlen, M. (1994). Magnetic separation techniques in diagnostic microbiology. Clinical Microbiology Reviews, 7, 43–54.

    CAS  Google Scholar 

  • Radu, S., Ling, O.W., Rusul, G., Karim, M. I. A., & Nishibuchi, M. (2001). Detection of Escherichia coli O157: H7 by multiplex PCR and their characterization by plasmid profiling, antimicrobial resistance, RAPD and PFGE analyses. Journal of Microbiological Methods, 46, 131–139. DOI: 10.1016/S0167-7012(01)00269-X.

    Article  CAS  Google Scholar 

  • Ripabelli, G., Sammarco, M. L., Ruberto, A., Iannitto, G., & Grasso, G. M. (1997). Immunomagnetic separation and conventional culture procedure for detection of naturally occurring Salmonella in raw pork sausages and chicken meat. Letters in Applied Microbiology, 24, 493–497. DOI: 10.1046/j.1472-765X.1997.00159.x.

    Article  CAS  Google Scholar 

  • Safarik, I., Lunackova, P., Mosiniewicz-Szablewska, E., Weyda, F., & Safarikova, M. (2007a). Adsorption of water-soluble organic dyes on ferrofluid-modified sawdust. Holzforschung, 61, 247–253. DOI: 10.1515/HF.2007.060.

    Article  CAS  Google Scholar 

  • Safarik, I., Rego, L. F. T., Borovska, M., Mosiniewicz-Szablewska, E., Weyda, F., & Safarikova, M. (2007b). New magnetically responsive yeast-based biosorbent for the efficient removal of water-soluble dyes. Enzyme and Microbial Technology, 40, 1551–1556. DOI: 10.1016/j.enzmictec.2006.10.034.

    Article  CAS  Google Scholar 

  • Safarik, I., Sabatkova, Z., Tokar, O., & Safarikova, M. (2007c). Magnetic cation exchange isolation of lysozyme from native hen egg white. Food Technology and Biotechnology, 45, 355–359.

    CAS  Google Scholar 

  • Safarik, I., & Safarikova, M. (1993). Batch isolation of hen egg white lysozyme with magnetic chitin. Journal of Biochemical and Biophysical Methods, 27, 327–330. DOI: 10.1016/0165-022X(93)90013-E.

    Article  CAS  Google Scholar 

  • Safarik, I., & Safarikova, M. (1997). Overview of magnetic separations used in biochemical and biotechnological applications. In U. Hafeli, W. Schutt, J. Teller, & M. Zborowski (Eds.), Scientific and clinical applications of magnetic carriers (pp. 323–340). New York, London: Plenum Press.

    Google Scholar 

  • Safarik, I., & Safarikova, M. (1999). Use of magnetic techniques for the isolation of cells. Journal of Chromatography B, 722, 33–53. DOI: 10.1016/S0378-4347(98)00338-7.

    Article  CAS  Google Scholar 

  • Safarik, I., & Safarikova, M. (2002). Magnetic nanoparticles and biosciences. Monatshefte für Chemie, 133, 737–759. DOI: 10.1007/s007060200047.

    CAS  Google Scholar 

  • Safarik, I., & Safarikova, M. (2004). Magnetic techniques for the isolation and purification of proteins and peptides. Bio-Magnetic Research and Technology, 2, 7. DOI: 10.1186/1477-044X-2-7.

    Article  Google Scholar 

  • Safarik, I., & Safarikova, M. (2007). Magnetically modified microbial cells: A new type of magnetic adsorbents. China Particuology, 5, 19–25. DOI: 10.1016/j.cpart.2006.12.003.

    Article  CAS  Google Scholar 

  • Safarik, I., Safarikova, M., & Forsythe, S. J. (1995). The application of magnetic separations in applied microbiology. Journal of Applied Bacteriology, 78, 575–585. DOI: 10.1111/j.1365-2672.1995.tb03102.x.

    CAS  Google Scholar 

  • Sakai, Y., Tamiya, Y., & Takahashi, F. (1994). Enhancement of ethanol formation by immobilized yeast containing iron powder or Ba-ferrite due to eddy current or hysteresis. Journal of Fermentation and Bioengineering, 77, 169–172. DOI: 10.1016/0922-338X(94)90318-2.

    Article  CAS  Google Scholar 

  • Schillinger, U., Brill, T., Rudolph, C., Huth, S., Gersting, S., Krotz, F., Hirschberger, J., Bergemann, C., & Plank, C. (2005). Advances in magnetofection — magnetically guided nucleic acid delivery. Journal of Magnetism and Magnetic Materials, 293, 501–508. DOI: 10.1016/j.jmmm.2005.01.032.

    Article  CAS  Google Scholar 

  • Sinclair, B. (1998). To bead or not to bead: Applications of magnetic bead technology. Scientist, 12(13), 17–23.

    Google Scholar 

  • Takahashi, F., Sakai, Y., & Mizutani, Y. (1997). Immobilized enzyme reaction controlled by magnetic heating: γ-Fe2O3-loaded thermosensitive polymer gels consisting of N-isopropylacrylamide and acrylamide. Journal of Fermentation and Bioengineering, 83, 152–156. DOI: 10.1016/S0922-338X(97)83574-X.

    Article  CAS  Google Scholar 

  • Tatsumi, K., Wada, S., & Ichikawa, H. (1996). Removal of chlorophenols from wastewater by immobilized horseradish peroxidase. Biotechnology and Bioengineering, 51, 126–130. DOI: 10.1002/(SICI)1097-0290(19960705)51:1〈126::AIDBIT15〉 3.0.CO;2-O.

    Article  CAS  Google Scholar 

  • Tong, X. D., Xue, B., & Sun, Y. (2001). A novel magnetic affinity support for protein adsorption and purification. Biotechnology Progress, 17, 134–139. DOI: 10.1021/bp000134g.

    Article  CAS  Google Scholar 

  • Wang, S. X., Bae, S. Y., Li, G. X., Sun, S. H., White, R. L., Kemp, J. T., & Webb, C. D. (2005). Towards a magnetic microarray for sensitive diagnostics. Journal of Magnetism and Magnetic Materials, 293, 731–736. DOI: 10.1016/j.jmmm.2005.02.054.

    Article  CAS  Google Scholar 

  • Wang, S. X., & Li, G. (2008). Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: Review and outlook. IEEE Transactions on Magnetics, 44, 1687–1702. DOI: 10.1109/TMAG.2008.920962.

    Article  Google Scholar 

  • Yang, C. L., Guan, Y. P., Xing, J. M., & Liu, H. Z. (2006). Development of superparamagnetic functional carriers and application for affinity separation of subtilisin Carlsberg. Polymer, 47, 2299–2304. DOI: 10.1016/j.polymer.2006.02.013.

    Article  CAS  Google Scholar 

  • Yang, C. L., Xing, J. M., Guan, Y. P., & Liu, H. Z. (2006). Superparamagnetic poly(methyl methacrylate) beads for nattokinase purification from fermentation broth. Applied Microbiology and Biotechnology, 72, 616–622. DOI: 10.1007/s00253-006-0484-5.

    Article  CAS  Google Scholar 

  • Yavuz, H., Denizli, A., Gungunes, H., Safarikova, M., & Safarik, I. (2006). Biosorption of mercury on magnetically modified yeast cells. Separation and Purification Technology, 52, 253–260. DOI: 10.1016/j.seppur.2006.05.001.

    Article  CAS  Google Scholar 

  • Yu, L. S. L., Uknalis, J., & Tu, S. I. (2001). Immunomagnetic separation methods for the isolation of Campylobacter jejuni from ground poultry meats. Journal of Immunological Methods, 256, 11–18. DOI: 10.1016/S0022-1759(01)00372-6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Safarik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safarik, I., Safarikova, M. Magnetic nano- and microparticles in biotechnology. Chem. Pap. 63, 497–505 (2009). https://doi.org/10.2478/s11696-009-0054-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-009-0054-2

Keywords

Navigation