Skip to main content
Log in

Influence of production progress on the heavy metal content in flax fibers

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The aim of this work was to determine the content of selected heavy metals in flax materials depending on the stage of fiber manufacturing. Non-treated natural fiber composition was compared with that of fibers processed. Changes in the composition of yarn before and after the following scutching, hackling, washing, and bleaching were also investigated. Analysis of heavy metals was performed applying inductively coupled plasma mass spectrometry. Flax material was mineralized in closed Teflon vials with a mixture of concentrated nitric acid which were then placed in a microwave oven system. Analytical quality of the obtained results was checked by the determination of elements in the Certificate Reference Materials of IAEA-V-10. The acquired results proved that the content of metals in flax clearly varies depending on the treatment process applied (bleaching, washing, coloration). Significant differences were also connected with the dye used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angelova, V., Ivanova, R., Delibatova, V., & Ivanov, K. (2004). Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Industrial Crops and Product, 19, 197–205. DOI: 10.1016/j.indcrop.2003.10.001.

    Article  CAS  Google Scholar 

  • Aspland, J. R. (1993). The application of ionic dyes to ionic fibres: nylon, silk and wool and their sorption of anions. Textile Chemist and Colorist, 3, 55–59.

    Google Scholar 

  • Barclay, S., & Buckley, C. (2000). Waste minimization guide for the textile industry: A step towards cleaner production, Vol. 1, Durban, South Africa: The Pollution Research Group, University of Natal. For the South African Water Research Commission.

    Google Scholar 

  • Becker, J. S., & Dietze, H. J. (1998). Inorganic trace analysis by mass spectrometry. Spectrochimica Acta Part B, 53, 1475–1506. DOI: 10.1016/S0584-8547(98)00110-4.

    Article  Google Scholar 

  • Becker, J. S., & Dietze, H. J. (2000). Inorganic mass spectrometric methods for trace, ultratrace isotope, and surface analysis. International Journal of Mass Spectrometry, 197, 1–35. DOI: 10.1016/S1387-3806(99)00246-8.

    Article  CAS  Google Scholar 

  • Brushwood, D. E., & Perkins, H. (1994). Determining the metal content of cotton. Textiles Chemist and Colorist, 26, 32–35.

    CAS  Google Scholar 

  • Citterio, S., Santagostino, A., Fumagalli, P., Prato, N., Ranalli, P., & Sgorbati, S. (2003). Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant and Soil, 256, 243–252. DOI: 10.1023/A:1026113905129.

    Article  CAS  Google Scholar 

  • Dawson, P. H. (Ed.) (1995). Quadrupole mass spectrometry and its applications. Elsevier: reissued by AIP Press: Woodbury, New York.

    Google Scholar 

  • Delaware AATCC Valley Section. American Institute of Chemical Engineers. (1990). The effect of selected finishes on colorfastness properties of acid dyed nylon 6. Textile Chemist and Colorist, 22, 23–27.

    Google Scholar 

  • Du, Z., Douglas, D. J., & Konenkov, N. V. (1999). Elemental analysis with quadrupole mass filters operated in higher stability regions. Journal of Analytical Atomic Spectrometry, 14, 1111–1119. DOI: 10.1039/a804022b.

    Article  CAS  Google Scholar 

  • Du, Z., & Douglas, D. J. (1999). A novel tandem quadrupole mass analyzer. Journal of the American Society of Mass Spectrometry, 10, 1053–1066. DOI: 10.1016/S10440305(99) 00094-X.

    Article  CAS  Google Scholar 

  • Čunko, R. (1996). Determination of heavy metals in the textile industry. Tekstil, 45, 1–10.

    Google Scholar 

  • Freeman, H. S. (1995). Effect of chemical structure on molecular motion of spin probes doped in nylon 6. Textile Chemist and Colorist, 27, 13–16.

    CAS  Google Scholar 

  • Graliński, M. (1973). Badania chemiczno-analityczne we włókiennictwie. Warszawa: WNT.

    Google Scholar 

  • Hill, W. E., Perkins, S., & Sandlin, G. S. (1993). Removal and speciation of transition metal ions in textile dyeings waste waters. Textile Chemist and Colorist, 25, 26–27.

    CAS  Google Scholar 

  • Houser, N. E. (1986). Dyeing cotton/wool blends. Textile Chemist and Colorist, 18, 11–18.

    CAS  Google Scholar 

  • Internationale Gemeinschaft für Forschung und Prüfung auf dem Gebiet der Textilökologie (2005). Öko Text Standards 100, 200, 1000. Zurich: Oeko Tex Gemeinschaft.

    Google Scholar 

  • Lennox-Kerr, P. (1998). A new dawn for linen. Textile Month, 10, 52–54.

    Google Scholar 

  • Leonas, K. K., & Michael, L. (1994). Textile process wastewater permits: an update and strategies. American Dyestuff Reporter, 3, 26–34.

    Google Scholar 

  • Linger, P., Müssig, J., Fischer, H., & Korbert, J. (2002). Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential. Industrial Crops and Products, 16, 33–42. DOI: 10.1016/S0926-6690(02)00005-5.

    Article  CAS  Google Scholar 

  • Lukipudis, S., & Botev, D. (1993). Flax from soils contaminated with heavy metals. Tekstilina Promishlenost, 41, 10–11. (in Russian)

    Google Scholar 

  • Muir, A. D., & Westcott, N. D. (2003). Flax: The genus Linum. Medical and aromatic plants — industrial profiles. New York: CRC Press.

    Google Scholar 

  • Niemin-Kalliala, E. (2003). Environmental indicators of textile products for ISO (type III) environmental product declaration. Autex Research Journal, 3, 206–218.

    Google Scholar 

  • Rezić, I., & Steffan, I. (2007). ICP-OES determination of metals present in textile material. Microchemical Journal, 85, 46–51. DOI: 10.1016/j.microc.2006.06.010.

    Article  Google Scholar 

  • Rybicki, E., Swiech, T., Lesniewska, E., Albinska, J., Szynkowska, M. I., Paryjczak, T., & Sypniewski, S. (2004). Changes in hazardous substances in cotton after mechanical and chemical treatements of textiles. Fibres and Textiles in Eastern Europe, 12(2), 67–72.

    CAS  Google Scholar 

  • Sampaio, S., Bishop, D., & Shen, J. (2005). Physical and chemical properties of flax fibres from stand-retted crops desiccated at different stages of maturity. Industrial Crops and Products, 21, 275–284. DOI: 10.1016/j.indcrop.2004.04.001.

    Article  CAS  Google Scholar 

  • Stiepanov, B. I. (1980). Podstawy chemii i technologii barwników organicznych. Warszawa: WNT.

    Google Scholar 

  • Van de Weyenberg, I., Ivens, J., De Coster, A., Kino, B., Baetens, E., & Verpoest, I. (2003). Influence of processing and chemical treatment of flax fibers on their composites. Composites Science and Technology, 63, 1241–1246. DOI: 10.1016/S0266-3538(03)00093-9.

    Article  Google Scholar 

  • Van de Weyenberg, I., Chi Truong, T., Vangrimde, B., & Verpoest, I. (2006). Improving the properties of UD flax fiber reinforced composites by applying an alkaline fiber treatment. Composites Part A: Applied Science and Manufacturing, 37, 1368–1376. DOI: 10.1016/j.compositesa.2005.08.016.

    Article  Google Scholar 

  • Zhaohui, D., & Douglas, D. J. (1999). A novel tandem quadrupole mass analyzer. Journal of the American Society for Mass Spectrometry, 10, 1053–1066. DOI: 10.1016/S1044-0305(99)00094-X.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata I. Szynkowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szynkowska, M.I., Rybicki, E., Leśniewska, E. et al. Influence of production progress on the heavy metal content in flax fibers. Chem. Pap. 63, 537–542 (2009). https://doi.org/10.2478/s11696-009-0044-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-009-0044-4

Keywords

Navigation