Skip to main content
Log in

Characterization of recombinant antibodies for detection of TNT and its derivatives

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Diverse recombinant immunoreagents specific for TNT-derivatives were tested in different assay forms in order to analyze their specificity and sensitivity. Performance of immunoassays was based on TNP-protein conjugates immobilization on a solid surface. In this work, the detection limit for TNT-analog TNP-Tris was 250 fmol or 87 pg mL−1 (87 ppt), which represents the most sensitive assay published until now, regarding the detection of recombinant antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achtnich, C., Pfortner, P., Weller, M. G., Niessner, R., Lenke, H., & Knackmuss, H. J. (1999). Reductive transformation of bound trinitrophenyl residues and free TNT during a bioremediation process analysed by immunoassay. Environmental Science & Technology, 33, 3421–3426. DOI: 10.1016/S0003-2697(02)00288-9.

    Article  CAS  Google Scholar 

  • Ausubel, F. M. (1996). Current protocols in molecular biology. New York: Wiley Interscience.

    Google Scholar 

  • Björk, I., Petersson, B. A., & Sjöquist, J. (1972). Some physicochemical properties of protein A from Staphylococcus aureus. European Journal of Biochemistry, 29, 579–584. DOI: 10.1111/j.1432-1033.1972.tb02024.x.

    Article  Google Scholar 

  • Charles, P., Gauger, P. R., Patterson, C. H., Jr., & Kusterbeck, A.W. (2000). On-site immunoanalysis of nitrate and nitroaromatic compounds in groundwater. Environmental Science & Technology, 34, 4641–4650. DOI: 10.1021/es001099c.

    Article  CAS  Google Scholar 

  • Charles, P. T., Shriver-Lake, L. C., Francesconi, S. C., Churilla, A. M., Rangasammy, J. G., Patterson, C. H., Jr., Deschamps, J. R., & Kusterbeck, A. W. (2004). Characterization and performance evaluation of in vivo and in vitro produced monoclonal anti-TNT antibodies for the detection of TNT. Journal of Immunological Methods, 284, 15–26. DOI: 10.1016/j.jim.2003.09.010.

    Article  CAS  Google Scholar 

  • Coffee, C. J., Bradshaw, R. A., Goldin, B. R., & Frieden, C. (1971). Identification of the sites of modification of bovine liver glutamate dehydrogenase reacted with trinitrobenzenesulfonate. Biochemistry, 10, 3516–3526. DOI: 10.1021/bi00795a005.

    Article  CAS  Google Scholar 

  • Fetterolf, D., Mudd, J., & Teten, K. (1991). An enzyme-linked immunosorbent assay (ELISA) for trinitrotoluene (TNT) residue on hands. Journal of Forensic Sciences, 36, 343–349. DOI: 10.1520/JFS13036J.

    CAS  Google Scholar 

  • Friguet, B., Chaffotte, A. F., Djavadi-Ohaniance, L., & Goldberg, M. E. (1985). Measurements of the true affinity constant in solution of antigen-antibody complexes by enzymelinked immunosorbent assay. Journal of Immunological Methods, 77, 305–319. DOI: 10.1016/0022-1759(85)90044-4.

    Article  CAS  Google Scholar 

  • Gauger, P. R., Holt, D. B., Patterson, C. H., Jr., Charles, P. T., Shriver-Like, L., & Kusterbeck, A. W. (2001). Explosives detection in soil using a field-portable continuous flow immunosensor. Journal of Hazardous Materials, 83, 51–63. DOI: 10.1016/S0304-3894(00)00327-7.

    Article  CAS  Google Scholar 

  • Goldman, E. R., Cohill, T. J., Patterson, C. H., Anderson, G. P., Kusterbeck, A. W., & Mauro, J. M. (2003)a. Detection of 2,4,6-trinitrotoluene in environmental samples using a homogeneous fluoroimmunoassay. Environmental Science & Technology, 37, 4733–4736. DOI: 10.1021/es034328e.

    Article  CAS  Google Scholar 

  • Goldman, E. R., Egge, A. L., Medintz, I. L., Lassman, M. E., & Anderson, G. P. (2005). Application of a homogeneous assay for the detection of 2,4,6-trinitrotoluene to environmental water samples. The Scientific World Journal, 5, 445–51. DOI: 10.1100/tsw.2005.58.

    Google Scholar 

  • Goldman, E. R., Hayhurst, A., Lingerfelt, B. M., Iverson, B. L., Georgiou, G., & Anderson, G. P. (2003)b. 2,4,6-Trinitrotoluene detection using recombinant antibodies. Journal of Environmental Monitoring, 5, 380–383. DOI: 10.1039/b302012f.

    Article  CAS  Google Scholar 

  • Green, T. M., Charles, P. T., & Anderson, G. P. (2002). Detection of 2,4,6-trinitrotoluene in seawater using a reverseddisplacement immunosensor. Analytical Biochemistry, 310, 36–41. DOI: 10.1016/S0003-2697(02)00288-9.

    Article  CAS  Google Scholar 

  • Irving, R. A., Kortt, A. A., & Hudson, P. J. (1996). Affinity maturation of recombinant antibodies using E. coli mutator cells. Immunotechnology, 2, 127–143. DOI: 10.1016/1380-2933(96)00044-9.

    CAS  Google Scholar 

  • Keuchel, C., & Niessner, R. (1994). Rapid field screening test for determination of 2,4,6-trinitrotoluene in water and soil with immunofiltration. Fresenius’ Journal of Analytical Chemistry, 350, 538–543. DOI: 10.1007/BF00321802.

    Article  CAS  Google Scholar 

  • Kusterbeck, A. W., & Charles, P. T. (1998). Field demonstration of a portable flow immunosensor. Field Analytical Chemistry & Technology, 2, 341–350. DOI: 10.1002/(SICI) 1520-6521(1998)2:6<341::AID-FACT4>3.0.CO;2-X.

    Article  CAS  Google Scholar 

  • Mezzari, M. P., Walters, K., Jelinkova, M., Shih, M.-C., Just, C. L., & Schnoor, J. L. (2005). Gene expression and microscopic analysis of Arabidopsis exposed to chloroacetanilide herbicides and explosive compounds. A phytoremediation approach. Plant Physiology, 138, 858–869. DOI: 10.1104/pp.104.056168.

    CAS  Google Scholar 

  • Narang, U., Gauger, P. R., Kusterbeck, A. W., & Ligler, F. S. (1998). Multianalyte detection using a capillary-based flow immunosensor. Analytical Biochemistry, 255, 13–19. DOI: 10.1006/abio.1997.2411.

    Article  CAS  Google Scholar 

  • Oda, M., & Azuma, T. (2000). Reevaluation of stoichiometry and affinity/avidity in interactions between anti-hapten antibodies and mono- or multi-valent antigens. Molecular Immunology, 37, 1111–1122. DOI: 10.1016/S0161-5890(01)00028-1.

    Article  CAS  Google Scholar 

  • Rabanny, S. Y., Lane, W. J., Marganski, W. A., Kusterbeck, A. W., & Ligler, F. S. (2000). Trace detection of explosives using a membrane-based displacement immunoassay. Journal of Immunological Methods, 246, 69–77. DOI: 10.1016/S0022-1759(00)00301-X.

    Article  Google Scholar 

  • Rosen, G., & Lotufo, G. R. (2005). Toxicity and fate of two munitions constituents in spiked sediment exposures with the marine amphipod Eohaustorius estuarius. Environmental Toxicology and Chemistry, 24, 2887–2897. DOI: 10.1897/04-611R.1.

    Article  CAS  Google Scholar 

  • Sapsford, K. E., Charles, P. T., Patterson, C. H., Jr., & Ligler, F. S. (2002). Demonstration of four immunoassay formats using the array biosensor. Analytical Chemistry, 74, 1061–1068. DOI: 10.1021/ac0157268.

    Article  CAS  Google Scholar 

  • Simonovic, M., Zlatanovic-Milosevic, S., Vrvic, M., & Simonovic, B. (2008). Recombinant expression of monovalent and bivalent anti-TNT-antibodies - evaluation of different expression systems. Journal of the Serbian Chemical Society, 73, 139–145. DOI: 10.2298/JSC0802139S.

    Article  CAS  Google Scholar 

  • Wannlund, J., & DeLuca, M. (1983). Bioluminescent immunoassays. Methods in Enzymology, 92, 426–432. DOI: 10.1016/0076-6879(83)92036-0.

    Article  CAS  Google Scholar 

  • Whelan, J. P., Kusterbeck, A. W., Wemhoff, G. A., Bredehorst, R., & Ligler, F. S. (1993). Continuous flow immunosensor for detection of explosives. Analytical Chemistry, 65, 3561–3565. DOI: 10.1021/ac00072a005.

    Article  CAS  Google Scholar 

  • Yau, K. Y. F., Dubuc, G., Li, S., Hirama, T., MacKenzie, C. R., Jermutus, L., Hall, J. C., & Tanha, J. (2005). Affinity maturation of a V(H)H by mutational hotspot randomization. Journal of Immunological Methods, 297, 213–224. DOI: 10.1016/j.jim.2004.12.005.

    Article  CAS  Google Scholar 

  • Yinon, J. (2002). Field detection and monitoring of explosives. Trends in Analytical Chemistry, 21, 292–301. DOI: 10.1016/S0165-9936(02)00408-9.

    Article  CAS  Google Scholar 

  • Zhou, Y., Drummond, D. C., Zou, H., Hayes, M. E., Adams, G. P., Kirpotin, D. B., & Marks, J. D. (2007). Impact of single-chain Fv antibody fragment affinity on nanoparticle targeting of epidermal growth factor receptor-expressing tumor cells. Journal of Molecular Biology, 371, 934–947. DOI: 10.1016/j.jmb.2007.05.011.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mladen Simonoviíc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simonoviíc, M., Milosević-Zlatanović, S., Milosavić, N. et al. Characterization of recombinant antibodies for detection of TNT and its derivatives. Chem. Pap. 63, 391–398 (2009). https://doi.org/10.2478/s11696-009-0043-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-009-0043-5

Keywords

Navigation