Skip to main content
Log in

Immobilization of porphyrins in poly(hydroxymethylsiloxane)

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Three tetracationic porphyrins differing in the position of charged nitrogen atoms on the peripheral substituents — 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP4), 5,10,15,20-tetrakis(N-methylpyridinium-2-yl)porphyrin (TMPyP2), 5,10,15,20-tetrakis(4-trimethylammoniophenyl) porphyrin (TMAPP), and hydrophobic 5,10,15,20-tetraphenylporphyrin (TPP), were immobilized by adsorption and encapsulation in poly(hydroxymethylsiloxane) (PHOMS). The so prepared porphyrin-PHOMS composites were characterized by porosimetry, scanning electron microscopy, fluorescence and diffuse reflectance UV-VIS spectroscopy. It was found that porphyrins are immobilized in the PHOMS matrix in the free base monomer form Their irradiation produced singlet oxygen O2(1Δg) with the lifetime of 10–30 μs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballesteros, B., Campidelli, S., de la Torre, G., Ehli, C., Guldi, D. M., Prato, M., & Torres, T. (2007). Synthesis, characterization and photophysical properties of a SWNT-phtalocyanine hybrid. Chemical Communications, 2007, 2950–2952. DOI: 10.1039/b702819a.

  • Bonnett, R. (1995). Photosenzitizers of the porphyrin and phtalocyanine series for photodynamic therapy. Chemical Society Reviews, 24, 19–33. DOI: 10.1039/CS9952400019.

    Article  CAS  Google Scholar 

  • Bonnett, R., Krysteva, M. A., Lalov, I. G., & Artarsky, S. V. (2006). Water disinfection using photosensitizers immobilized on chitosan. Water Research, 40, 1269–1275. DOI: 10.1016/j.watres.2006.01.014.

    Article  CAS  Google Scholar 

  • Brennan, J. D. (2007). Biofriendly sol-gel processing for the entrapment of soluble and membrane-bound proteins. Toward novel solid-phase assays for high throughput screening. Accounts of Chemical Research, 40, 827–835. DOI: 10.1021/ar6000268.

    Article  CAS  Google Scholar 

  • Chirvony, V., Bolotin, V., Matveeva, E., & Parkhutik, V. (2006). Fluorescence and 1O2 generation properties of porphyrin molecules immobilized in oxidized nano-porous silicon matrix. Journal of Photochemistry and Photobiology A: Chemistry, 181, 106–113. DOI: 10.1016j/j.jphotochem.2005.11.008.

    Article  CAS  Google Scholar 

  • Chirvony, V. S., Bolotin, V. L., Overejo, J., Matveeva, E. S., Dyhagarov, D. M., Allbela, J., & Parkhutik, V. (2007). Luminiscence properties of the porphyrin/porous silicon composites. Physica Status Solidi A: Applications and Materials Science, 204, 1523–1527. DOI: 10.1002/pssa.200674414.

    Article  CAS  Google Scholar 

  • Dargiewicz, J., Makarska, M., & Radzki, S. (2002). Spectroscopic characterization of water soluble cationic porphyrins in sol-gel matrices and coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 208, 159–165. DOI: 10.1016/S0927-7757(02)00142-5.

    Article  CAS  Google Scholar 

  • DeRosa, M., & Crutchley, R. J. (2002). Photosensitized singlet oxygen and its applications. Coordination Chemistry Reviews, 233–234, 351–371. DOI: 10.1016/S0010-8545(02)00034-6

    Article  Google Scholar 

  • De la Luz, V., García-Sánchez, M. A., & Campero, A. (2007). Luminiscent porphyrinosilica obtained by the sol gel-method. Journal of Non-Crystalline Solids, 353, 2143–2149. DOI: 10.1016/j.jnoncrysol.2007.03.010.

    Article  Google Scholar 

  • Faust, D., Funken, K.-H., Horneck, G., Milow, B., Ortner, J., Sattlegger, M., Schäfer, M., & Schmitz, C. (1999). Immobilized photosensitizers for solar photochemical applications. Solar Energy, 65, 71–74. DOI: 10.1016/S0038-092X(98)00099-1.

    Article  CAS  Google Scholar 

  • García-Sánchez, M. A., Tello, S. R., Sosa, F. R., & Campero, A. (2006). Fluorescent porphyirins trapped in monolithic SiO2 gels. Journal of Sol-Gel Science and Technology, 37, 93–97. DOI: 10.1007/s10971-006-6425-z.

    Article  Google Scholar 

  • Guldi, D. M., Taieb, H., Rahman, G. M. A., Tagmadarchis, N., & Prato, H. (2005). Novel photoactive single walled carbon-nanotube-porphyrin polymer wraps: efiicient and long-lived intracomplex charge separation. Advanced Materials, 17, 871–875. DOI: 10.1002/adma.200401621.

    Article  CAS  Google Scholar 

  • Hetflejs, J., Kuncova, G., Blechta, V., & Brus, J. (2006). Alternative synthesis of poly(hydroxymethylsiloxane) for lipase immobilization and use of the adsorbates as esterification biocatalysts. Journal of Sol-Gel Science and Technology, 38, 121–131. DOI: 10.1007/s10971-006-7115-6.

    Article  CAS  Google Scholar 

  • Jori, G., & Brown, S. B. (2004). Photosensitized inactivation of microorganisms. Photochemical & Photobiological Sciences, 3, 403–405. DOI: 10.1039/b311904c.

    Article  CAS  Google Scholar 

  • Julliard, M. (1997). Immobilized photosensitizers and photocatalysis. In M. Chanon (Ed.), Homogeneous photocatalysis, Chapter 7 (pp. 222–258). New York: Wiley.

    Google Scholar 

  • Krouit, M., Granet, R., Branland, P., Verneuil, B., & Krausz, P. (2006). New photoantimicrobial films composed of porphyrinated lipophilic cellulose esters. Bioorganic & Medicinal Chemistry Letters, 16, 1651–1655. DOI: 10.1016/j.bmel.2005.12.008.

    Article  CAS  Google Scholar 

  • Lang, K., Bezdička, P., Bourdelande, J. L., Hernando, J., Jirka, I., Káfuńková, E., Kovanda, F., Kubát, P., Mosinger, J., & Wagnerová, D.M. (2007). Layered double hydroxides with intercalated porphyrines as photofunctional materials. Subtile structural changes modify singlet oxygen production. Chemistry of Materials, 19, 3822–3829. DOI: 10.1021/cm070351d.

    Article  CAS  Google Scholar 

  • Lobnik, A., & Wolbeis, O. S. (2001). Probing the polarity of sol-gels and ormosils via the absorption of Nile Red. Journal of Sol-Gel Science and Technology, 20, 301–311. DOI: 10.1023/A:1008734320809.

    Article  Google Scholar 

  • Moreno, E. M., & Levy, D. (2000). Role of the conomer GLYMO in Ormosil as reflected by nile red spectroscopy. Chemistry of Materials, 12, 2334–2340. DOI: 10.1021/cm001048e.

    Article  CAS  Google Scholar 

  • Mosinger, J., Jirsák, O., Kubát, P., Lang, K., & Mosinger, B.,Jr. (2007). Bactericidal nanofabric based on photoproduction of singlet oxygen. Journal of Material Chemistry, 17, 164–166. DOI: 10.1039/b614617a.

    Article  CAS  Google Scholar 

  • Ou, Z., Yao, H., & Kimura, K. (2007). Preparation and optical properties of organic nanoparticles of porphyrin without self-aggregation. Journal of Photochemistry and Photobiology A: Chemistry, 189, 7–14. DOI: 10.1016/j.jphotochem.2006.12.042.

    Article  CAS  Google Scholar 

  • Redmond, R. W., & Gamlin, J. N. (1999). A compilation of singlet oxygen yields from biologically relevant molecules. Photochemistry and Photobiology, 70, 391–475. DOI: 10.1111/j.1751-1097.1999.tb08240.x.

    CAS  Google Scholar 

  • Sherrill, J., Michielsen, S., & Stojiljkovic, I. (2003). Grafting of light-activated antimicrobial materials to nylon films. Journal of Polymer Science: Part A: Polymer Chemistry, 41, 41–47. DOI: 10.1002/pola.10556.

    Article  CAS  Google Scholar 

  • Wahlen, J., De Vos, D. E., Jacobs, P. A., & Alsters, P. L. (2004). Solid materials as sources of synthetically useful singlet oxygen. Advanced Synthesis & Catalysis, 346, 152–164. DOI: 10.1002/adsc.200303224.

    Article  CAS  Google Scholar 

  • Wróbel, D., Hanyż, I., Bartkowiak, R., & Ion, R. M. (1998). Fluorescence and time-resolved delayed luminiscence of porphyrins in organic solvents and polymer matrices. Journal of Fluorescence, 8, 191–199. DOI: 10.1023/A:1022524814908.

    Article  Google Scholar 

  • Yoshida, A., Kakegawa, N., & Ogawa, M. (2003). Adsorption of cationic porphyrin onto mesoporous silicas. Research on Chemical Intermediates, 29, 721–731. DOI: 10.1163/156856703322601735.

    Article  CAS  Google Scholar 

  • Yusoff, N. H., Salleh, M. M., & Yahaya, M. (2008). Fluorescence gas sensor using TiO2 nanoparticles coated with porphyrin dye thin films. Solid State Science and Technology, 16, 63–74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Kuncová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šabata, S., Hetflejš, J., Rychtáriková, R. et al. Immobilization of porphyrins in poly(hydroxymethylsiloxane). Chem. Pap. 63, 438–444 (2009). https://doi.org/10.2478/s11696-009-0037-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-009-0037-3

Keywords

Navigation