Skip to main content
Log in

QSAR analysis of 1,3-diaryl-2-propen-1-ones and their indole analogs for designing potent antibacterial agents

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A series of 1,3-diaryl-2-propen-1-ones and their indole analogs were synthesized and evaluated for antibacterial activity. Structures of newly synthesized compounds were confirmed by physicochemical, spectral and elemental analysis. All the compounds were screened for their antibacterial activities against four different bacterial strains. The QSAR studies were performed using Vlife MDS 3.5 software. QSAR equation revealed that selected electronic, steric and lipophilic parameters have good correlation with antibacterial activity. Best equations were selected on basis of the correlation coefficient (r 2) and the predictable ability of the equations. The present findings suggest that the 1,3-diaryl-2-propen-1-ones framework is an attractive template for structure optimization to achieve higher potency, lower toxicity, and a wider spectrum of antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Omran, F., & El-Khair, A. A. (2004). Synthesis of polyfunctionally substituted heteroaromatic compounds via benzotriazolyl chalcones with antimicrobial and antifungal activities. Journal of Heterocyclic Chemistry, 41, 327–333.

    Article  CAS  Google Scholar 

  • Audry, E., Dubost, J. P., Colleter, J. C., & Dallet, P. (1986). A new approach to structure-activity relations: the molecular lipophilicity potential. European Journal of Medicinal Chemistry, 21, 71–72.

    CAS  Google Scholar 

  • Berber, I., Cokmus, C., & Atalan, E. (2003). Characterization of Staphylococcus species by SDS-PAGE of whole cell and extracellular proteins. Microbiology, 72, 54–57. DOI: 10.1023/A:1022221905449.

    Article  CAS  Google Scholar 

  • Deng, J., Sanchez, T., Al-Mawsawi, L. Q., Dayam, R., Yunes, R. A., Garofalo, A., Bolger, M. B., & Neamati, N. (2007). Discovery of structurally diverse HIV-1 integrase inhibitors based on a chalcone pharmacophore. Bioorganic & Medicinal Chemistry, 15, 4985–5002. DOI: 10.1016/j.bmc.2007.04.041.

    Article  CAS  Google Scholar 

  • Furniss, B. S., Hannaford, A. J., Smith, P. W. G., & Tatchell, A. R. (1989). Vogel’s textbook of practical organic chemistry, (5th ed., p. 1034.). London: Longman Scientific & Technical.

    Google Scholar 

  • Gasull, E. I., Silber, J. J., Blanco, S. E., Tomas, F., & Ferretti, F. H. (2000). A theoretical and experimental study of the formation mechanism of 4-X-chalcones by the Claisen-Schmidt reaction. Journal of Molecular Structure: THEOCHEM, 503, 131–144. DOI: 10.1016/S0166-1280(99)00256-0.

    Article  CAS  Google Scholar 

  • Hall, L. H., & Kier, L. B. (1991). The molecular connectivity chi indexes and kappa shape indexes in structure-property modeling. In K. B. Lipkowitz & D. B. Boyd (Eds.), Reviews of computational chemistry (Vol. 2, Chap. 9, pp. 367–422). New York: VCH Publishers. DOI: 002/9780470125793.ch9.

    Chapter  Google Scholar 

  • Hasan, A., Khan, K. M., Sher, M., Maharvi, G. M., Nawaz, S. A., Choudhary, M. I., Atta-ur-Rahman, & Supuran, C. T. (2005). Synthesis and inhibitory potential towards acetylcholinesterase, butyrylcholinesterase and lipoxigenase of some variably substituted chalcones. Journal of Enzyme Inhibition and Medicinal Chemistry, 20, 41–47. DOI: 10.1080/14756360400015231.

    Article  CAS  Google Scholar 

  • Herencia, F., Ferrándiz, M. L., Ubeda, A., Dominguez, J. N., Charris, J. E., Lobo, G. M., & Alcaraz, M. J. (1998). Synthesis and anti-inflammatory activity of chalcone derivatives. Bioorganic & Medicinal Chemistry Letters, 8, 1169–1174. DOI: 10.1016/S0960-894X(98)00179-6.

    Article  CAS  Google Scholar 

  • Herencia, F., Lopez-Garcia, M. P., Ubeda, A., & Ferrándiz, M. L. (2002). Nitric oxide-scavenging properties of some chalcone derivatives. Nitric Oxide: Biology and Chemistry, 6, 242–246. DOI: 10.1006/niox.2001.0396.

    Article  CAS  Google Scholar 

  • Khan, M. S. Y., & Hasan, S. M. (2003). Synthesis, antiinflammatory and antibacterial activity of some new flavonoidal derivatives. Indian Journal of Chemistry, Section B, 42, 1970–1974.

    Google Scholar 

  • Kier, L. B., & Hall, L. H. (1977). The nature of structure-activity relationships and their relation to molecular connectivity. European Journal of Medicinal Chemistry, 12, 307–312.

    CAS  Google Scholar 

  • Lahtchev, K. L., Batovska, D. I., Parushev, St. P., Ubiyvovk, V. M., & Sibirny, A. A. (2008). Antifungal activity of chalcones: A mechanistic study using various yeast strains. European Journal of Medicinal Chemistry, 43, 2220–2228. DOI: 10.1016/j.ejmech.2007.12.027.

    Article  CAS  Google Scholar 

  • Lee, V. J., & Hecker, S. J. (1999). Antibiotic resistance versus small molecules, the chemical evolution. Medicinal Research Reviews, 19, 521–542. DOI: 10.1002/(SICI)1098-1128(199911)19:6<521::AID-MED4>3.0.CO;2-9.

    Article  CAS  Google Scholar 

  • Liu, M., Wilairat, P., Croft, S. L., Tan, A. L-C., & Go, ML. (2003). Structure-activity relationships of antileishmanial and antimalarial chalcones. Bioorganic & Medicinal Chemistry, 11, 2729–2738. DOI: 10.1016/S0968-0896(03)00233-5.

    Article  CAS  Google Scholar 

  • López, S. N., Castelli, M. V., Zacchino, S. A., Dominguez, J. N., Lobo, G., Charris-Charris, J., Cortes, J. C. G., Ribas, J. C., Devia, C., Rodriguez, A. M., & Enriz, R. D. (2001). In vitro antifungal evaluation and structure.activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall. Bioorganic & Medicinal Chemistry, 9, 1999–2013. DOI: 10.1016/S0968-0896(01)00116-X.

    Article  Google Scholar 

  • Mishra, N., Arora, P., Kumar, B., Mishra, L. C., Bhattacharya, A., Awasthi S. K., & Bhasin, V. K. (2008). Synthesis of novel substituted 1,3-diaryl propenone derivatives and their antimalarial activity in vitro. European Journal of Medicinal Chemistry, 43, 1530–1535. DOI: 10.1016/j.ejmech.2007.09.014.

    Article  CAS  Google Scholar 

  • Mitscher, L. A., Pillai, S. P., Gentry, E. J., & Shankel, D. M. (1999). Multiple drug resistance. Medicinal Research Reviews, 19, 477–496. DOI: 10.1002/(SICI)1098-1128(199911)19:6<477::AID-MED2>3.0.CO;2-W.

    Article  CAS  Google Scholar 

  • Nowakowska, Z. (2007). A review of anti-infective and anti-inflammatory chalcones. European Journal of Medicinal Chemistry, 42, 125–137. DOI: 10.1016/j.ejmech.2006.09.019.

    Article  CAS  Google Scholar 

  • Ono, M., Hori, M., Haratake, M., Tomiyama, T., Mori, H., & Nakayama, M. (2007). Structure.activity relationship of chalcones and related derivatives as ligands for detecting of β-amyloid plaques in the brain. Bioorganic & Medicinal Chemistry, 15, 6388–6396. DOI: 10.1016/j.bmc.2007.06.055.

    Article  CAS  Google Scholar 

  • Pellerin, J. L., Bourdeau, P., Sebbag, H., & Person, J. M. (1998). Epidemiosurveillance of antimicrobial compound resistance of Staphylococcus intermedius clinical isolates from canine pyodermas. Comparative Immunology Microbiology & Infectious Diseases, 21, 115–133. DOI: 10.1016/S0147-9571(97)00026-X.

    Article  CAS  Google Scholar 

  • Sivakumar, P. M., Prabu Seenivasan, S., Kumar, V., & Doble, M. (2007). Synthesis, antimycobacterial activity evaluation, and QSAR studies of chalcone derivatives. Bioorganic & Medicinal Chemistry Letters, 17, 1695–1700. DOI: 10.1016/j.bmcl.2006.12.112.

    Article  CAS  Google Scholar 

  • Solankee, A., & Patel, J. (2004). Synthesis of chalcones, pyrazolines, aminopyrimidines and pyrimidinethiones as antibacterial agents. Indian Journal of Chemistry, Section B, 43, 1580–1584.

    Google Scholar 

  • Sung, W. S., Jung, H. J., Park, K., Kim, H. S., Lee, I-S., & Lee, D. G. (2007). 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF); antimicrobial compound with cell cycle arrest in nosocomial pathogens. Life Sciences, 80, 586–591. DOI: 10.1016/j.lfs.2006.10.008.

    Article  CAS  Google Scholar 

  • Xu, Y. C., Leung, S. W. S., Yeung, D. K. Y., Hu, L. H., Chen, G. H., Che, C. M., & Man, R. Y. K. (2007). Structure. activity relationships of flavonoids for vascular relaxation in porcine coronary artery. Phytochemistry, 68, 1179–1188. DOI: 10.1016/j.phytochem.2007.02.013.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neela M. Bhatia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatia, N.M., Mahadik, K.R. & Bhatia, M.S. QSAR analysis of 1,3-diaryl-2-propen-1-ones and their indole analogs for designing potent antibacterial agents. Chem. Pap. 63, 456–463 (2009). https://doi.org/10.2478/s11696-009-0026-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-009-0026-6

Keywords

Navigation