Skip to main content
Log in

A rapid in vitro assay of cobalamin in human urine and medical tablets using ICP-MS

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A rapid and simple as well as sensitive inductively coupled plasma mass spectrometry (ICP-MS) method for the determination of cobalamin is described. Cobalamin in human urine and medicine tablet solutions was converted on-line into free cobalt ions in acid medium, the cobalt ions were then detected by ICP-MS. Cobalamin was determined by measuring the increase of integral counts per second intensity, which was linear over the cobalamin concentration range of 1.0 × 10−10 g mL−1 to 8.0 × 10−5 g mL−1, and the limit of detection was 0.05 ng mL−1 (3σ). At the pump rate of 30 rotations per minute, one analysis cycle of cobalamin, including sampling and washing, could be accomplished in 0.5 min with the relative standard deviations of less than 5 %. The proposed procedure was applied successfully in monitoring cobalamin in human urine without any pretreatment process and in rapid determination of cobalamin in multivitamin tablets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baker, S. A., & Miller-Ihli, N. J. (2000). Determination of cobalamins using capillary electrophoresis inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 55, 1823–1832. DOI: 10.1016/S0584-8547(00)00271-8.

    Article  Google Scholar 

  • Ball, G. F. M. (1998). Bioavailability and analysis of vitamins in foods (p. 497). London: Chapmann & Hall.

    Google Scholar 

  • Barakat, S. A., Rusan, M., & Burns, D. T. (1997). Spectrophotometric determination of cobalt by extraction of benzyltributylammonium tetrathiocyanatocobaltate(II). Analytica Chimica Acta, 355, 163–166. DOI: 10.1016/S0003-2670(97)00500-X.

    Article  CAS  Google Scholar 

  • Bernard, M. A., Nakonezny, P. A., & Kashner, T. M. (1998). The effect of cobalamin deficiency on older veterans and its relationship to health. Journal of the American Geriatrics Society, 46, 1199–1206.

    CAS  Google Scholar 

  • Chen, J. H., & Jiang, S. J. (2008). Determination of cobalamin in nutritive supplements and chlorella foods by capillary electrophoresis-inductively coupled plasma mass spectrometry. Journal of Agricultural and Food Chemistry, 56, 1210–1215. DOI: 10.1021/jf073213h.

    Article  CAS  Google Scholar 

  • Fenech, M. (2002). Biomarkers of genetic damage for cancer epidemiology. Toxicology, 181–182, 411–416. DOI: 10.1016/S0300-483X(02)00480-8.

    Article  Google Scholar 

  • Heudi, O., Kilinc, T., & Fontannaz, P. (2005). Separation of water-soluble vitamins by reversed-phase high performance liquid chromatography with ultra-violet detection: application to polyvitaminated premixes. Journal of Chromatography A, 1070, 49–56. DOI: 10.1016/j.chroma.2005.02.033.

    Article  CAS  Google Scholar 

  • Heudi, O., Kilinc, T., Fontannaz, P., & Marley, E. (2006). Determination of cobalamin in food products and in premixes by reversed-phase high performance liquid chromatography and immunoaffinity extraction. Journal of Chromatography A, 1101, 63–68. DOI: 10.1016/j.chroma.2005.09.059.

    Article  CAS  Google Scholar 

  • Indyk, H. E., Persson, B. S., Caselunghe, M. C., Moberg, A., Filonzi, E. L, & Woollard, D. C. (2002). Determination of cobalamin in milk products and selected foods by optical biosensor protein-binding assay: method comparison. Journal of Association of Official Analytical Chemists International, 85, 72–81.

    CAS  Google Scholar 

  • Institute of medicine, Food and nutrition board. Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, cobalamin, pantothenic acid, biotin, and choline. (2000). Washington, DC: National Academy Press.

    Google Scholar 

  • Jin, G., Zhu, Y. R., Jiang, W. Q., Xie, B. P., & Cheng, B. (1997). Spectrophotometric determination of cobalt(II) using the chromogenic reagent 4,4-diazobenzenediazoaminoazobenzene in a micellar surfactant medium. Analyst, 122, 263–266. DOI: 10.1039/a606804i.

    Article  CAS  Google Scholar 

  • Pakin, C., Bergaentzlé, M., Aoudé-Werner, D., & Hasselmann, C. (2005). α-Ribazole, a fluorescent marker for the liquid chromatographic determination of cobalamin in foodstuffs. Journal of Chromatography A, 1081, 182–189. DOI: 10.1016/j.chroma.2005.05.066.

    Article  CAS  Google Scholar 

  • Qin, W., Zhang, Z., & Liu, H. (1997). Chemiluminescence flow sensor for the determination of cobalamin. Analytica Chimica Acta, 357, 127–132. DOI: 10.1016/S0003-2670(97)00546-1.

    Article  CAS  Google Scholar 

  • Refera, T., Chandravanshi, B. S., & Alemu, H. (1998). Differential pulse anodic strippping voltammetric determination of cobalt(II) with N-p-chlorophenylcinnamohydroxamic acid modified carbon paste electrode. Electroanalysis, 10, 1038–1042. DOI: 10.1002/(SICI)1521-4109(199810)10:15<1038::AID-ELAN1038>3.0.CO;2-3.

    Article  CAS  Google Scholar 

  • Reyes, L. H., Gayón, J. M. M., Alonso, J. I. G., & Sanz-Medel, A. (2003). Determination of selenium in biological materials by isotope dilution analysis with an octapole reaction system ICP-MS. Journal of Analytical Atomic Spectrometry, 18, 11–16. DOI: 10.1039/b209213a.

    Article  Google Scholar 

  • Sakai, T., Suzui, M., Higuchi, H., Kajita, Y., & Uchida, T. (1997). Preconcentration on organic solvent-soluble membrane filter and spectrophotometric determination of trace cobalt in biological samples. Analytical Sciences, 13S, 131–136. DOI: 10.2116/analsci.13.Supplement 131.

    Article  Google Scholar 

  • Salomon, S., Jenne, V., & Hoenig, M. (2002). Practical aspects of routine trace element environmental analysis by inductively coupled plasma-mass spectrometry. Talanta, 57, 157–168. DOI: 10.1016/S0039-9140(01)00678-6.

    Article  CAS  Google Scholar 

  • Samadi-Maybodi, A., & Darzi, S. K. (2008). Simultaneous determination of vitamin B12 and its derivatives using some of multivariate calibration 1 (MVC1) techniques. Spectrochimica Acta Part A: Molecular Spectroscopy, 70, 1167–1172. DOI: 10.1016/j.saa.2007.10.037.

    Article  Google Scholar 

  • Sahni, M. K., Spanos, S., Wahrman, M. Z., & Sharma, G. M. (2001). Marine corrinoid-binding proteins for the direct determination of cobalamin by radioassay. Analytical Biochemistry, 289, 68–76. DOI: 10.1006/abio.2000.4923.

    Article  CAS  Google Scholar 

  • Tomčik, P., Banks, C. E., Davies, T. J., & Compton, R. G. (2004). A self-catalytic carbon paste electrode for the detection of vitamin B-12. Analytical Chemistry, 76, 161–165. DOI: 10.1021/ac0302298.

    Article  Google Scholar 

  • Viñas, P., Campillo, N., López García, I., & Hernández Córdoba, M. (1996). Speciation of vitamin B12 analogues by liquid chromatography with flame atomic absorption spectrometric detection. Analytica Chimica Acta, 318, 319–325. DOI: 10.1016/0003-2670(95)00445-9.

    Article  Google Scholar 

  • Zhou, Y. K., Li, H., Liu, Y., & Liang, G. Y. (1991). Chemiluminescence determination of vitamin B12 by a flowinjection method. Analytica Chimica Acta, 243, 127–130. DOI: 10.1016/S0003-2670(00)82550-7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gai Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Liu, J., Meng, Z. et al. A rapid in vitro assay of cobalamin in human urine and medical tablets using ICP-MS. Chem. Pap. 63, 366–370 (2009). https://doi.org/10.2478/s11696-009-0022-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-009-0022-x

Keywords

Navigation