Skip to main content

Advertisement

Log in

N2O catalytic decomposition — effect of pelleting pressure on activity of Co-Mn-Al mixed oxide catalysts

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The effect of pelleting pressure (0–10 MPa) during the preparation of Co-Mn-Al mixed oxide catalyst on its texture and activity for N2O catalytic decomposition was examined for small grain sizes used in laboratory experiments, and for model industry catalyst particles. Adsorption/desorption measurements of nitrogen, mercury porosimetry and helium pycnometry were used for detail characterization of porous structure. A volume of micropores of about 20 mm3 g−1 was evaluated using modified BET equation. This value did practically not change with the increasing pelletization pressure except that of the sample formed at the pressure of 10 MPa. Although an increase of pelleting pressure caused an increase in bulk density and a decrease in pore size and pore volume of the prepared catalyst (resulting in lower values of N2O effective diffusion coefficient), no direct correlation between pelleting pressure used and catalyst activity has been found. In contrary, estimation of the internal diffusion limitation according to the Weisz-Prater criterion indicated that even laboratory experimental data obtained for catalyst grains with particle size lower than 0.315 mm pelletized at higher pressures could be influenced by internal diffusion. Estimation of the internal mass transfer limitation in industrial catalyst particles described by the effectiveness factor showed that effectiveness factor of about 0.07 and 0.2 can be obtained for spheres with the radius of 1.5 mm and 0.5 mm, respectively, if pelleting pressure of about 6 MPa was used for the catalyst preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chang, K. S., Song, H., Park, Y.-S., & Woo, J. W. (2004). Analysis of N2O decomposition over fixed bed mixed metal oxide catalysts made from hydrotalcite-type precursor. Applied Catalysis A: General, 273, 223–231. DOI: 10.1016/j.apcata.2004.06.036.

    Article  CAS  Google Scholar 

  • Ertl, G., Knözinger, H., & Weitkamp, J. (Eds.) (1996). Laboratory catalytic reactors: Aspects of catalyst. In Handbook of Heterogeneous Catalysis (pp. 1359–1376). Wienheim: Wiley-VCH.

  • Galejová K. (2007). Effect of promoters in mixed oxide catalysts for N 2 O catalytic decomposition. Diploma thesis, VSB-Technical University of Ostrava.

  • Kapteijn, F., Rodriguez-Mirasol, J., & Moulijn, J. A. (1996). Heterogeneous catalytic decomposition of nitrous oxide. Applied Catalysis B: Environmental, 9, 25–64. DOI: 10.1016/0926-3373(96)90072-7.

    CAS  Google Scholar 

  • Kaucký, D., Jíša K., Vondrová, A., Nováková, J., & Sobalík, Z. (2006). Isothermal oscillation during N2O decomposition over Fe- and Fe/Pt-ferrierite: Effect of NO addition. Journal of Catalysis, 242, 270–277. DOI: 10.1016/j.jcat.2006.06.010.

    Article  Google Scholar 

  • Kovanda, F., Rojka, T., Dobešovč, V., Bezdička, P., Obalová, L., Jirátová, K., & Grygar, T. (2006). Mixed oxide obtained from Co and Mn containing layered double hydroxides: Preparation, characterization, and catalytic properties. Journal of Solid State Chemistry, 179, 812–823. DOI: 10.10156/j.jssc.2005.12.004.

    Article  CAS  Google Scholar 

  • Krishna, R., & Sie, S. T. (1994). Strategies for multiphase reactor selection. Chemical Engineering Science, 49, 4029–4065. DOI: 10.1016/S0009-2509(05)80005-3.

    Article  CAS  Google Scholar 

  • Levenspiel, O. (1979) Chemical reactor omnibook. Corvallis, Oregon: OSU Bookstores.

    Google Scholar 

  • Obalová, L., Jirátová, K., Kovanda, F., Pacultová, K., Lacny, Z., & Mikulová, Z. (2005). Catalytic decomposition of nitrous oxide over catalysts prepared from Co/Mg-Mn/Al hydrotalcite-like compounds. Applied Catalysis B: Environmental, 60, 289–297. DOI: 10.1016/j.apcatb.2005.04.002.

    Article  Google Scholar 

  • Obalová, L., & Fíla, V. (2007). Kinetic analysis of N2O decomposition over calcined hydrotalcites. Applied Catalysis B: Environmental, 70, 353–359. DOI: 10.1016/j.apcatb.2005.11.031.

    Article  Google Scholar 

  • Obalová, L., Pacultová, K., Balabánová, J., Jirátová, K., Bastl, Z., Valášková, M., Lacný, Z., & Kovanda, F.(2007a). Effect of Mn/Al ratio in Co-Mn-Al mixed oxide catalysts prepared from hydrotalcite-like precursors on catalytic decomposition of N2O. Catalysis Today, 119, 233–238. DOI: 10.1016/j.cattod.2006.08.027.

    Article  Google Scholar 

  • Obalová, L., Pacultová, K., Kovanda, F., Lacny, Z., Galejová, K., & Jirátová, K. (2007b). Effect of promoter doping in calcined Co-Mn-Al layered double hydroxide on catalytic decomposition of N2O. In Proceedings of the 8th European Congress on Catalysis EuropaCat-VIII, 26–31 August 2007 (pp. 13–68). Turku/Åbo, Finland.

  • Obalová, L., Kovanda, F., Jirátová, K., Pacultová, K., & Lacny, Z. (2008). Application of calcined layered double hydroxides as catalysts for abatement of N2O emissions. Collection of Czechoslovak Chemical Communications, 73, 1045–1060. DOI: 10.1135/cccc20081045.

    Article  Google Scholar 

  • Pérez-Ramírez, J., Overeijnder, J., Kapteijn, F., & Moulijn, J. A. (1999). Structural promotion and stabilizing effect of Mg in the catalytic decomposition of nitrous oxide over calcined hydrotalcite-like compounds. Applied Catalysis B: Environmental, 23, 59–72. DOI: 10.1016/S0926-3373(99)00066-1.

    Article  Google Scholar 

  • Pérez-Ramírez, J., Kapteijn, F., Schöffel, K., & Moulijn, J. A. (2003). Formation and control of N2O in nitric acid production: Where do we stand today? Applied Catalysis B: Environmental, 44, 117–151. DOI: 10.1016/S0926-3373(03)00026-2.

    Article  Google Scholar 

  • Schneider, P. (1995). Adsorption isotherms of microporousmesoporous solids revisited. Applied Catalysis A: General, 129, 157–165. DOI: 10.1016/0926-860X(95)00110-7.

    Article  CAS  Google Scholar 

  • Serwicka, E. M., & Bahranowski, K. (2004). Environmental catalysis by tailored materials derived from layered minerals. Catalysis Today, 90, 85–92. DOI: 10.1016/j.cattod.2004.04.012.

    Article  CAS  Google Scholar 

  • Sing, K. S. W. (1982). Reporting physisorption data for gas solid systems — with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 54, 2201–2218. DOI: 10.1351/pac198254112201.

    Article  Google Scholar 

  • Vaccari, A. (1999). Clays and catalysis: a promising future. Applied Clays Science, 14, 161–198. DOI: 10.1016/S0169-1317(98)00058-1.

    Article  CAS  Google Scholar 

  • Xue, L., Zhang, C., He, H., & Teraoka, Y. (2007). Promotion effect of residual K on the decomposition of N2O over cobalt-cerium mixed oxide catalyst. Catalysis Today, 126, 449–455. DOI: 10.1016/j.cattod.2007.06021.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kateřina Galejová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galejová, K., Obalová, L., Jirátová, K. et al. N2O catalytic decomposition — effect of pelleting pressure on activity of Co-Mn-Al mixed oxide catalysts. Chem. Pap. 63, 172–179 (2009). https://doi.org/10.2478/s11696-008-0105-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-008-0105-0

Keywords

Navigation