Skip to main content

Advertisement

Log in

Pyrolytic and catalytic conversion of rape oil into aromatic and aliphatic fractions in a fixed bed reactor on Al2O3 and Al2O3/B2O3 catalysts

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In the, at present, unstable fuel market, much attention is devoted to alternative technologies for fuel production and development of alternative products of the petrochemical industry. One of the prospective sources of fuel and alternative petrochemical products is biomass, and the use of oil plants is one of the possibilities. This paper reports on a possible conversion of rapeseed oil produced in Poland into intermediate hydrocarbon fractions by pyrolysis combined with parallel catalytic conversion. The products were analysed by gas chromatography coupled with a mass detector. The process was performed in a fixed-bed reactor and was monitored by FTIR and 1H NMR. Depending on the catalysts applied, the products contained: water, carbon oxides, hydrogen, aliphatic or aromatic hydrocarbons accompanied by some amount of C2-C5 hydrocarbons formed during the cracking process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahadur, N. P., Boocock, D. G. B, & Konar, S. K. (1995). Liquid hydrocarbons from catalytic pyrolysis of sewage sludge lipid and canola oil: Evaluation of fuel properties. Energy & Fuels, 9, 248–256. DOI: 10.1021/ef00050a007.

    Article  CAS  Google Scholar 

  • Boocock, D. G. B., Konar, S. K., Leung, A., & Ly, L. D. (1992)a. Fuels and chemicals from sewage sludge. 1. The solvent extraction and composition of a lipid from a raw sewage sludge. Fuel, 71, 1283–1289. DOI: 10.1016/0016-2361(92)90055-S.

    Article  CAS  Google Scholar 

  • Boocock, D. G. B., Konar, S. K., Mackay, A., Cheung, P. T. C., & Liu, J. (1992)b. Fuels and chemicals from sewage sludge. 2. The production of alkanes and alkenes by the pyrolysis of triglycerides over activated alumina. Fuel, 71, 1291–1297. DOI: 10.1016/0016-2361(92)90056-T.

    Article  CAS  Google Scholar 

  • Delmastro, A., Gozzelino, G., Mazza, D., Vallino, M., Busca, G., & Lorenzelli, G. (1992). Characterization of microporous amorphous alumina-boria. Journal of the Chemical Society, Faraday Transactions, 88, 2065–2070. DOI: 10.1039/FT9928802065.

    Article  CAS  Google Scholar 

  • Katikaneni, S. P. R., Adjaye, J. D., Idem, R. O., & Bakhshi, N. N. (1996). Catalytic conversion of canola oil over potassiumimpregnated HZSM-5 catalysts: C2-C4 olefin production and model reaction studies. Industrial & Engineering Chemistry Research, 35, 3332–3346. DOI: 10.1021/ie950740u.

    Article  CAS  Google Scholar 

  • Kirszensztejn, P., Przekop, R., Szymkowiak, A., Maćkowska, E., & Gaca, J. (2006). Preparation of MgO-Al2O3 binary gel system with mesoporous structure. Micro and Mesoporous Materials, 89, 150–157. DOI: 10.1016/j.micromeso.2005.10.019.

    Article  CAS  Google Scholar 

  • Kirszensztejn, P., Szymkowiak, A., Marciniak, P., Martyla, A., & Przekop, R. (2003). Texture of Al2O3-SnO2 binary oxides system obtained via sol-gel chemistry. Applied Catalysis A: General, 245, 159–166. DOI: 10.1016/S0926-860X(02)00651-8.

    Article  CAS  Google Scholar 

  • Maher, K. D., & Bressler, D. C. (2007). Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresource Technology, 98, 2351–2368. DOI: 10.1016/j.biortech.2006.10.025.

    Article  CAS  Google Scholar 

  • Odgen, J. S., & Young, N. A. (1988). The characterisation of molecular boric acid by mass spectrometry and matrix isolation infrared spectroscopy. Journal of the Chemical Society, Dalton Transactions, 1988, 1645–1652. DOI: 10.1039/DT9880001645.

    Google Scholar 

  • Sadrameli, S. M., & Green, A. E. S. (2007). Systematics of renewable olefins from thermal cracking of canola oil. Journal of Analytical and Applied Pyrolysis, 78, 445–451. DOI: 10.1016/j.jaap.2006.12.010.

    Article  CAS  Google Scholar 

  • Sheng, T. C., Kirszensztejn, P., Bell, T. N., & Gay, I. D. (1994). 31P and 119Sn high resolution solid state CP/MAS NMR study of Al2O3-SnO2 system. Catalysis Letters, 23, 119–126. DOI: 10.1007/BF00812139.

    Article  CAS  Google Scholar 

  • Vonghia, E., Boocock, D. G. B., Konar, S. K., & Leung, A. (1995). Pathways for the deoxygenation of triglycerides to aliphatic hydrocarbons over activated alumina. Energy & Fuels, 9, 1090–1096. DOI: 10.1021/ef00054a024.

    Article  CAS  Google Scholar 

  • Weisz, P. B., Haag, W. O., & Rodewald, P. G. (1979). Highgrade fuels from biomass farming: potentials and constraints. Science, 206, 57–58. DOI: 10.1126/science.206.4414.24.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Kirszensztejn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirszensztejn, P., Przekop, R., Tolińska, A. et al. Pyrolytic and catalytic conversion of rape oil into aromatic and aliphatic fractions in a fixed bed reactor on Al2O3 and Al2O3/B2O3 catalysts. Chem. Pap. 63, 226–232 (2009). https://doi.org/10.2478/s11696-008-0104-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-008-0104-1

Keywords

Navigation