Skip to main content
Log in

Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Methanol has recently attracted significant interest in the energetic field. Current technology for the conversion of methane to methanol is based on energy intensive endothermic steam reforming followed by catalytic conversion into methanol. The one-step method performed at very low temperatures (35°C) is methane oxidation to methanol via bacteria. The aim of this work was to examine the role of copper in the one-step methane oxidation to methanol by utilizing whole cells of Methylosinus trichosporium OB3b bacteria. From the results obtained it was found that copper concentration in the medium influences the rate of bacterial biomass growth or methanol production during the process of methane oxidation to methanol. The presented results indicate that the process of methane oxidation to methanol by Methylosinus trichosporium OB3b bacteria is most efficient when the mineral medium contains 1.0 × 10−6 mol dm−3 of copper. Under these conditions, a satisfactory growth of biomass was also achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barta, T. M., & Hanson, R. S. (1993). Genetics of methane and methanol oxidation in Gram-negative methylotrophic bacteria. Antonie van Leeuwenhoek, 64, 109–120. DOI: 10.1007/BF00873021.

    Article  Google Scholar 

  • Bender, M., & Conrad, R. (1995). Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biology & Biochemistry, 27, 1517–1527. DOI: 10.1016/0038-0717(95)00104-M.

    Article  CAS  Google Scholar 

  • Benstead, J., King, G. M., & Williams, H. G. (1998). Methanol promotes atmospheric methane oxidation by methanotrophic cultures and soils. Applied Environmental Microbiology, 64, 1091–1098. DOI: 0099-2240/98/$04.00+0.

    CAS  Google Scholar 

  • Berndt, H., Martin, A., Bruckner, A., Schreier, E., Müller, D., Kosslick, H., Wolf, G.-U., & Lücke B. (2000). Structure and catalytic properties of VOx/MCM materials for the partial oxidation of methane to formaldehyde. Journal of Catalysis, 191, 384–400. DOI: 10.1006/jcat.1999.2786.

    Article  CAS  Google Scholar 

  • Brown, M. J., & Parkyns, N. D. (1991). Progress in the partial oxidation of methane to methanol and formaldehyde. Catalysis Today, 8, 305–335. DOI: 10.1016/0920-5861(91)80056-F.

    Article  CAS  Google Scholar 

  • Burch, R., Squire, G. D., & Tsang, S. C. (1989). Direct conversion of methane into methanol. Journal of the Chemical Society, Faraday Transactions 1,85, 3561–3568. DOI: 10.1039/F19898503561.

    Google Scholar 

  • Dalton, H., Priori, S. D., Leak, D. J., & Stanley, S. H. (1984). Regulation and control of methane monooxygenase. In R. L. Crawford and R. S. Hanson (Eds.), Microbial growth on C 1 compounds (pp. 75–82). Washington, D.C.: American Society for Microbiology.

    Google Scholar 

  • Feng, W., Knopf, F. C., & Dooley, K. M. (1994). Effects of pressure, third bodies, and temperature profiling on the noncatalytic partial oxidation of methane. Energy & Fuels, 8, 815–1005. DOI: 10.1021/ef00046a001.

    Article  CAS  Google Scholar 

  • Foulds, G. A., Gray, B. F, Miller, S. A., & Walker, G. S. (1993). Homogeneous gas-phase oxidation of methane using oxygen as oxidant in an annular reactor. Industrial & Engineering Chemistry Research, 32, 780–787. DOI: 10.1021/ie00017a003.

    Article  CAS  Google Scholar 

  • Furuto, T., Takeguchi, M., & Okura, I. (1999). Semicontinuous methanol biosynthesis by Methylosinus trichosporium Ob3b. Journal of Molecular Catalysis A: Chemical, 144, 257–261. DOI: 10.1016/S1381-1169(99)00007-2.

    Article  CAS  Google Scholar 

  • Haggin, J. (1990). Alternative fuels to petroleum gain increased attention. Chemical & Engineering News, 23, 25–27.

    Google Scholar 

  • Hanson, R. S., & Hanson, T. E. (1996). Methanotrophic bacteria. Microbiology Review, 60, 439–471.

    CAS  Google Scholar 

  • Harwood, J. H., & Pirt, S. J. (1972). Quantitative aspects of growth of the methane oxidizing bacterium Methylococcus capsulatus on methane in shake flask and continuous chemostat culture. Journal of Applied Bacteriology, 35, 597–607. DOI: 10.1111/j.1365-2672.1972.tb03741.x.

    CAS  Google Scholar 

  • Hunter, N. R., Gesser, H. D., Morton, L. A., Yarlagadda, P. S., & Fung, D. P. C. (1990). Methanol formation at high pressure by the catalyzed oxidation of natural gas and by the sensitized oxidation of methane. Applied Catalysis A: General, 57, 45–54. 10.1016/S0166-9834(00)80722-8.

    CAS  Google Scholar 

  • Kudo, H., & Ono, T. (1997). Partial oxidation of CH4 over ZSM-5 catalysts. Applied Surface Science, 121–122. 413–416. DOI: 10.1016/S0169-4332(97)00348-6.

    Article  Google Scholar 

  • Lamb, S. C., & Garver, J. C. (1980). Batch- and continuous-culture studies of methane-utilizing mixed culture. Biotechnology & Bioengineering, 22, 2097–2118. DOI: 10.1002/bit.260221009.

    Article  CAS  Google Scholar 

  • Lieberman, R. L., & Rosenzweig, A. C. (2004). Biological methane oxidation: regulation, biochemistry and active site structure of particulate methane monooxygenase. Critical Reviews in Biochemistry and Molecular Biology, 39, 147–164. DOI: 10.1080/10409230490475507.

    Article  CAS  Google Scholar 

  • Lipscomb, J. D. (1996). Biochemistry of the soluble methane monooxygenase. Annual Review of Microbiology, 48, 371–399. DOI: 10.1146/annurev.mi.48.100194.002103.

    Article  Google Scholar 

  • Maślakiewicz, P., & Steczko J. (1989). Monooksygenaza metanowa — występowanie, właściwości oraz perspektywy wykorzystania w procesach biotechnologicznych. Biotechnologia, 3(4), 56–61.

    Google Scholar 

  • Michalkiewicz, B. (2004). Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe-ZSM-5. Applied Catalysis A: General, 277, 147–153. DOI: 10.1016/j.apcata.2004.09.005.

    Article  CAS  Google Scholar 

  • Otsuka, K., & Hatano, M. (1987). The catalysts for the synthesis of formaldehyde by partial oxidation of methane. Journal of Catalysis, 108, 252–255. DOI: 10.1016/0021-9517(87)90172-2.

    Article  CAS  Google Scholar 

  • Otsuka, K., & Wang, Y. (2001). Direct conversion of methane into oxygenates. Applied Catalysis A: General, 222, 145–161. DOI: 10.1016/S0926-860X(01)00837-7.

    Article  CAS  Google Scholar 

  • Patt, T. E., Cole, G. C., Bland, J., & Hanson, R. S. (1974). Isolation and characterization of bacteria that grow on methane and organic compounds as sole sources of carbon and energy. Journal of Bacteriology, 120, 955–964.

    CAS  Google Scholar 

  • Periana, R. A., Taube, D. J., Gamble, S., Taube, H., Satoh, T., & Fujii, H. (1998). Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science, 280, 560–564. DOI: 10.1126/science.280.5363.560.

    Article  CAS  Google Scholar 

  • Rytz, D. W., & Baiker, A. (1991). Partial oxidation of methane to methanol in a flow reactor at elevated pressure. Industrial & Engineering Chemistry Research, 30, 2287–2292. DOI: 10.1021/ie00058a007.

    Article  CAS  Google Scholar 

  • Takeguchi, M., & Okura, I. (1999). The role iron and copper in particulate methane monooxygenase of Methylosinus trichosporium OB3b. Journal of Molecular Catalysis A: Chemical, 137, 161–168. DOI: 10.1016/S1381-1169(98)00123-X.

    Article  CAS  Google Scholar 

  • Takeguchi, M., & Okura, I. (2000). Role of iron and copper in particulate methane monooxygenase of Methylosinus trichosporium OB3b. Catalysis Surveys from Japan, 4, 51–63. DOI: 10.1023/A:1019036105038.

    Article  CAS  Google Scholar 

  • Thomas, D. J., Willi, R., & Baiker, A. (1992). Partial oxidation of methane: the role of surface reactions. Industrial & Engineering Chemistry Research, 31, 2272–2278. DOI: 10.1021/ie00010a003.

    Article  CAS  Google Scholar 

  • Wilkinson, T. G., & Harrison, D. E. (1973). The affinity methane and methanol of mixed cultures grown on methane in continuous culture. Journal of Applied Bacteriology, 36, 309–313. DOI: 10.1111/j.1365-2672.1973.tb04107.x.

    CAS  Google Scholar 

  • Wittenbury, R., Phillips, K. C., & Wilkinson, J. G. (1970). Enrichment isolation and some properties of methane utilizing bacteria. Journal of General Microbiology, 61, 205–218.

    Google Scholar 

  • Xin, J. Y., Cui, J. R., Niu, J. Z., Hua, S. F., Xia, C. G., Li, S.B., & Li, M. Z. (2004). Production of methanol from methane by methanotrophic bacteria. Biocatalysis & Biotransformation, 22, 225–229. DOI: 10.1080/10242420412331283305.

    Article  CAS  Google Scholar 

  • Yamada, Y., Ueda, A., Shioyama, H., & Kobayashi, T. (2003). High throughput experiments on methane partial oxidation using molecular oxygen over silica doped with various elements. Applied Catalysis A: General, 254, 45–58. DOI: 10.1016/S0926-860X(03)00262-X.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Michalkiewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markowska, A., Michalkiewicz, B. Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b. Chem. Pap. 63, 105–110 (2009). https://doi.org/10.2478/s11696-008-0100-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-008-0100-5

Keywords

Navigation