Skip to main content
Log in

Influence of solution composition and iron powder characteristics on reduction of 2,4,6-trinitrophenol

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Kinetics of the 2,4,6-trinitrophenol reaction with iron powder was investigated voltammetrically. The process was found to be mainly governed both by the iron powder characteristics and by the solution composition. Degradation kinetics was generally represented by a pseudo-first-order rate law. Consecutively, the 2,4,6-trinitrophenol reduction reaction rates for three fractions of iron powder as well as the effect of individual ions presented in the reaction system were evaluated. A correlation between the reaction rate and both the grain size of iron particles and the state of their surface was found. The effect of the reaction system composition was investigated for two types of buffered medium: Britton-Robinson buffer (boric acid, orthophosphoric acid, and glacial acetic acid) and acetate buffer solution (sodium acetate and acetic acid).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, A., & Tratnyek, P. G. (1996). Reduction of nitro aromatic compounds by zero-valent iron metal. Environmental Science & Technology, 30, 153–160. DOI: 10.1021/es950211h.

    Article  CAS  Google Scholar 

  • Choi, J. H., Kim, Y. H., & Choi, S. J. (2007). Reductive dechlorination and biodegradation of 2,4,6-trichlorophenol using sequential permeable reactive barriers: Laboratory studies. Chemosphere, 67, 1551–1557. DOI: 10.1016/j.chemosphere.2006.12.029.

    Article  CAS  Google Scholar 

  • Gálová, M., Oriňáková, R., & Lux, L. (1998). Distribution of charge in the process of coating Fe powder by electrolysis in a fluidized bed. Journal of Solid State Electrochemistry, 2, 2–6. DOI: 10.1007/s100080050057.

    Article  Google Scholar 

  • Gotpagar, J. K., Grulke, E. A., & Bhattacharyya, D. (1998). Reductive dehalogenation of trichloroethylene: kinetic models and experimental verification. Journal of Hazardous Materials, 62, 243–264. DOI: 10.1016/S0304-3894(98)00184-8.

    Article  CAS  Google Scholar 

  • Heiss, G., & Knackmuss, H.-J. (2002). Bio-elimination of trinitroaromatic compounds: immobilization versus mineralization. Current Opinion in Microbiology, 5, 282–287. DOI: 10.1016/S1369-5274(02)00316-8.

    Article  CAS  Google Scholar 

  • Heželová, M., Pikna, L’., Kladeková, D., & Lux, L. (2006). Effect of chloride ions on the kinetics of nitrobenzene reduction by powdered iron. Chemical Papers, 60, 360–364. DOI: 10.2478/s11696-006-0065-1.

    Article  Google Scholar 

  • Hofmann, K. W., Knackmuss, H.-J., & Heiss, G. (2004). Nitrite elimination and hydrolytic ring cleavage in 2,4,6-trinitrophenol (Picric acid) degradation. Applied and Environmental Microbiology, 70, 2854–2860. DOI: 10.1128/AEM.70.5.2854-2860.2004.

    Article  CAS  Google Scholar 

  • Kladeková, D., Heželová, M., & Lux, L. (2007). Evaluation of surface reactivity of Fe powders: Reaction with nitrobenzene. Particulate Science and Technology, 25, 139–146. DOI: 10.1080/02726350701257857.

    Article  Google Scholar 

  • Lavine, B. K., Auslander, G., & Ritter, J. (2001). Polarographic studies of zero valent iron as a reductant for remediation of nitroaromatics in the environment. Microchemical Journal, 70, 69–83. DOI: 10.1016/S0026-265X(01)00075-3.

    Article  CAS  Google Scholar 

  • Lux, L., Gálová, M., Heželová, M., & Markušová, K. (1999). Investigation of the reactivity of powder surface by abrasive voltammetry. Journal of Solid State Electrochemistry, 3, 288–292. DOI: 10.1007/s100080050159.

    Article  CAS  Google Scholar 

  • Mockovčiaková, A., Ficeriová, A., Boldižárová, E., & Kmecová, E. (2003). Fractal surface and kinetics of leaching process of mechanically activated sulfitic mineral. In Proceedings of the 4th International Conference on Particulate Compounds in Science, Industry, and Environment, 11–12 November 2003 (pp. 71–74). Košice, Slovakia: Technical University in Košice (in Slovak).

    Google Scholar 

  • Nord, H., & Bech-Nielsen, G. (1971). The anodic dissolution of iron-III. Coverage on iron in the active and passive states in acid carboxylate solutions. Electrochimica Acta, 16, 849–864. DOI: 10.1016/0013-4686(71)85052-1.

    Article  CAS  Google Scholar 

  • Ramos, J. L., González-Pérez, M. M., Caballero, A., & van Dillewijn, P. (2005). Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight. Current Opinion in Biotechnology, 16, 275–281. DOI: 10.1016/j.copbio.2005.03.010.

    Article  CAS  Google Scholar 

  • Scherer, M. M., Johnson, K. M., Westall, J. C., & Tratnyek, P. G. (2001). Mass transport effects on the kinetics of nitrobenzene reduction by iron metal. Environmental Science Technology, 35, 2804–2811. DOI: 10.1021/es0016856.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mária Heželová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kladeková, D., Heželová, M. Influence of solution composition and iron powder characteristics on reduction of 2,4,6-trinitrophenol. Chem. Pap. 62, 553–558 (2008). https://doi.org/10.2478/s11696-008-0075-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-008-0075-2

Keywords

Navigation