Skip to main content
Log in

Determination of dissociation degrees of K3NbF8 and K3TaF8 by thermodynamic analysis of subsystems of the KF-K2NbF7 and KF-K2TaF7 systems

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A special form of the LeChatelier-Shreder equation describing the equilibrium between the crystalline phase and the melt in system A-AB in which the substance AB partially dissociates upon melting was applied to systems KF-K3NbF8, K2NbF7-K3NbF8 and to KF-K3TaF8, K2TaF7-K3TaF8 subsystems of the binary systems KF-K2NbF7 and KF-K2TaF7 in which the additive compounds K3NbF8 and K3TaF8 are formed. Using the phase diagram of the system KF-K2NbF7 determined by McCawley and Barclay (1971) and the values of the fusion enthalpy of K3NbF8 taken from literature, the intervals of the dissociation degree values of K3NbF8 for both branches of the liquidus curve of K3NbF8 were calculated. The calculated values of the dissociation degree depend on the coordinates of the liquidus curve of K3NbF8 of the pertinent phase diagram, on its used branch and section, and on the value of the fusion enthalpy of K3NbF8. For the measured fusion enthalpy of K3NbF8 (57 kJ mol−1), a common interval of the dissociation degree values of K3NbF8 for both branches of the liquidus curve of K3NbF8 is 0.71–0.72. Similarly, intervals of the dissociation degree values of K3TaF8 for both branches of the liquidus curve of K3TaF8 were calculated using the phase diagram of the system KF-K2TaF7 determined by Boča et al. (2007) and the measured fusion enthalpy of K3TaF8 ((52 ± 2) kJ mol−1). The error of the determination of the fusion enthalpy of K3TaF8, the common interval of the dissociation degree values of K3TaF8 for both branches of the liquidus curve of K3TaF8 is 0.68–0.69.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boča, M., Danielik, V., Ivanová, Z., Mikšíková, E., & Kubíková, B. (2007). Phase diagrams of the KF-K2TaF7 and KF-Ta2O5 systems. Journal of Thermal Analysis and Calorimetry, 90, 159–165. DOI: 10.1007/s10973-006-7700-5.

    Article  Google Scholar 

  • Chrenková, M., Daněk, V., & Silný, A. (2000). Density of the systems LiF-KF-K2NbF7. Chemical Papers, 54, 272–276.

    Google Scholar 

  • Chrenková, M., Danielik, V., Daněk, V., & Silný, A. (1999). Phase diagram of the system LiF-KF-K2NbF7. In M. Gaune-Escard (Ed.), Advances in molten salts. From structural aspects to waste processing (pp. 112–124). New York: Begell House.

    Google Scholar 

  • Cuj, B.-S., Luzhnaya, N. P., & Konstantinov, V. I. (1963). Issledovanie trojnoj vzaimnoj sistemy iz ftoridov i chloridov kalija i tantala. Žurnal Neorganiçeskoj Chimii, 8, 389–395.

    Google Scholar 

  • Efros, I. D., & Lantratov, M. F. (1964). Fusibility in the region of the KF-TaF5 system which is rich in KF. Zhurnal Prikladnoj Khimii (Leningrad), 37, 2521–2523. Translation: Journal of Applied Chemistry USSR (Engl. Transl.), 37, 2483–2485. Taken from NIST Standard Reference Database 31, Phase Equilibria Diagrams Database, Version 2.1 for Windows 95. American Ceramics Society, 1993.

    CAS  Google Scholar 

  • Iuchi, T., Matsushima, T., & Ono, K. (1960). Studies on the production of tantalum by electrolysis of fused salt. (I): On the electrolytic bath. Bulletin of the Research Institute of Mineral Dressing and Metallurgy, Tohoku University, 15, 87–90.

    Google Scholar 

  • Iuchi, T., & Ono, K. (1961). Studies on the production of tantalum by electrolysis of fused salt. I. Solubility of tantalum oxide (Ta2O5-KF-K2TaF7 and Ta2O5-KCl-K2TaF7). Science Reports of the Research Institutes, Tohoku University, Serie A-13, 456–465.

    CAS  Google Scholar 

  • Kamenskaja, L. A., & Konstantinov, V. I. (1971). Trojnaja sistema KCl-KF-K2TaF7. Žurnal Neorganiçeskoj Chimii, 16, 2003–2005.

    Google Scholar 

  • Kosa, L., & Macková, I. (2006). Determination of the enthalpy of fusion of K3TaF8 and K3TaOF6. Thermochimica Acta, 447, 209–211. DOI: 10.1016/j.tca.2006.04.006.

    Article  CAS  Google Scholar 

  • Kosa, L., Macková, I., & Chrenková, M. (2003). Determination of the enthalpy of fusion of K2NbF7 and K3NbF8. Chemical Papers, 57, 301–303.

    CAS  Google Scholar 

  • McCawley, F. X., & Barclay, J. A. (1971). NaF-KF-K2NbF7 fused salt. Temperature-solubility diagram. Journal of the American Ceramic Society, 54, 11–12. DOI: 10.1111/j.1151-2916.1971.tb12156.x.

    Article  CAS  Google Scholar 

  • Mukhtar, A., & Winand, R. (1965). Establishment by thermal analysis and X-rays of the phase diagram of the system KF-K2NbF7. Comptes Rendus de l’Academie des Sciences, Serie II Fascicule C-Chimie, 260, 3674–3676.

    CAS  Google Scholar 

  • Nerád, I., Mikšíková, E., & Daněk, V. (2003). Thermochemical properties of potassium niobate octafluoride K3NbF8. In P. Šajgalík, M. Drábik, & Š. Varga (Eds.), Solid state chemistry V — Solid state phenomena (pp. 90–96). Zurich: Trans Tech Publications.

    Google Scholar 

  • Nerád, I., Strečko, J., Proks, I., Adamkovičová, K., & Kosa, L. (1995). The slope calculation of tangent line to the liquidus curve at dystectic melting point of a compound AqBr in a phase diagram of an A-AqBr system. Chemical Papers, 49, 1–4.

    Google Scholar 

  • Nguyen, D. K., & Daněk, V. (2000). Viscosity of melts of the system LiF-KF-K2NbF7. Chemical Papers, 54, 277–281.

    CAS  Google Scholar 

  • Proks, I., & Daněk, V. (2001a). Thermodynamic equilibrium between melt and crystalline phase of a compound AqBr with dystectic melting point. III. Application to the systems KF-K3TiF7 and KCl-K3TiF6Cl. Chemical Papers, 55, 137–141.

    CAS  Google Scholar 

  • Proks, I., & Daněk, V. (2001b). Thermodynamic equilibrium between melt and crystalline phase of a compound AqBr with dystectic melting point. IV. Application to the systems NaF-NaMgF3 and KF-KMgF3. Chemical Papers, 55, 142–144.

    CAS  Google Scholar 

  • Proks, I., Daněk, V., Kosa, L., & Adamkovičová, K. (2001). Thermodynamic equilibrium between melt and crystalline phase of a compound AqBr with dystectic melting point. II. Application to the systems KF-K3FMoO4 and KF-K3FWO4. Chemical Papers, 55, 59–66.

    CAS  Google Scholar 

  • Proks, I., Daněk, V., Kosa, L., Nerád, I., & Adamkovičová, K. (2000). Thermodynamic equilibrium between melt and crystalline phase of a compound AqBr with dystectic melting point. I. Theoretical approach. Chemical Papers, 54, 61–65.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Kosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosa, L., Proks, I. Determination of dissociation degrees of K3NbF8 and K3TaF8 by thermodynamic analysis of subsystems of the KF-K2NbF7 and KF-K2TaF7 systems. Chem. Pap. 62, 616–622 (2008). https://doi.org/10.2478/s11696-008-0064-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-008-0064-5

Keywords

Navigation