Skip to main content
Log in

Computer-aided process design of affinity membrane adsorbers: a case study on antibodies capturing

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Design of affinity membrane adsorbers for the purification of biomolecules requires a consideration of loading, washing, and elution. Modelling and simulation of membrane adsorbers in literature is, however, strongly focused on the loading step. Therefore, in this work, a complete process model which takes all the different steps into account was developed. Breakthrough experiments in which human IgG was captured onto and eluted from Sartobind Protein A downscale modules were used for model validation and for estimation of the required model parameters. The experimentally observed breakthrough curves were independent of the applied flow rate and from these results linear correlations between lumped kinetic parameters and linear velocity were determined. During elution, desorption was best described by an irreversible reaction of first order in H+ concentration. Applicability of the developed model to computer-aided design was illustrated through a process analysis study in which the influence of the amount of loaded protein per cycle on the process yield and productivity was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arve, B. H. & Liapis, A. I. (1988). Modeling and analysis of elution stage of biospecific adsorption in finite bath. Biotechnology and Bioengineering, 31, 240–249. DOI: 10.1002/bit.260310310.

    Article  CAS  Google Scholar 

  • Brandt, S., Goffe, R. A., Kessler, S. B., O’Connor, J. L., & Zale, S. E. (1988). Membrane-based affinity technology for commercial scale purifications. Bio/Technology, 6, 779–782. DOI: 10.1038/nbt0788-779.

    Article  CAS  Google Scholar 

  • Castilho, L., Birger Anspach, F., & Deckwer, W. (2002). Comparison of affinity membranes for the purification of immunoglobulins, Journal of Membrane Science, 207, 253–264. DOI: 10.1016/S0376-7388(02)00257-0.

    Article  CAS  Google Scholar 

  • Demmer, W., & Nussbaumer, D. (1999). Large scale membrane adsorbers. Journal of Chromatography A, 852, 73–81. DOI: 10.1016/S0021-9673(99)00603-2.

    Article  CAS  Google Scholar 

  • Ghose, S., Hubbard, B., & Cramer, S. (2007). Binding capacity differences for antibodies and Fc-fusion proteins on protein A chromatographic materials. Biotechnology and Bioengineering, 96, 768–779. DOI: 10.1002/bit.21044.

    Article  CAS  Google Scholar 

  • Hahn, R., Schlegel, R., & Jungbauer, A. (2003). Comparison of protein A affinity sorbents. Journal of Chromatography B, 790, 35–51. DOI: 10.1016/S1570-0232(03)00092-8.

    Article  CAS  Google Scholar 

  • Hahn, R., Bauerhansl, P., Shimahara, K., Wizniewski, C., Tscheliessnig, A., & Jungbauer, A. (2005). Comparison of protein A affinity sorbents: II. Mass transfer properties. Journal of Chromatography A, 1093, 98–110. DOI: 10.1016/j.chroma.2005.07.050.

    Article  CAS  Google Scholar 

  • Liu, H., & Fried, J. (1994). Breakthrough of lysozyme through an affinity membrane of cellulose-Cibacron blue. AIChE Journal, 40, 40–49. DOI: 10.1002/aic.6904001707.

    Article  CAS  Google Scholar 

  • Montesinos-Cisneros, R., Ortega, J., Guzman, R., & Tejeda-Mansir, A. (2006). Breakthrough performance of linear-DNA on ion-exchange membrane columns. Bioprocess and Biosystems Engineering, 29, 91–98. DOI: 10.1007/s00449-006-0055-2.

    Article  CAS  Google Scholar 

  • Suen, S., & Etzel, M. R. (1992). A mathematical analysis of affinity membrane bioseparations. Chemical Engineering Science, 47, 1355–1364. DOI: 10.1016/0009-2509(92)80281-G.

    Article  CAS  Google Scholar 

  • Suen, S., & Etzel, M. R. (1994). Sorption kinetics and break-through curves for pepsin and chymosin using pepstatin A affinity membranes. Journal of Chromatography A, 686, 179–192. DOI: 10.1016/0021-9673(94)00701-2.

    Article  CAS  Google Scholar 

  • Tejeda, A., Ortega, J., Magana, I. & Guzman, R. (1999). Optimal design of affinity membrane chromatographic columns. Journal of Chromatography A, 80, 293–300. DOI: 10.1016/S0021-9673(98)00898-X.

    Article  Google Scholar 

  • Thomas, H. C. (1944). Heterogeneous ion exchange in a flowing system. Journal of the American Chemical Society, 66, 1664–1666. DOI: 10.1021/ja01238a017.

    Article  CAS  Google Scholar 

  • Thomas, H. C. (1948). Chromatography: a problem in kinetics. Annals of the New York Academy of Sciences, 49, 161–182.

    Article  CAS  Google Scholar 

  • van Beijeren, P., Kreis, P., Mutter, M., Sommerfeld, S., Bäcker, W., & Górak, A. (2007). Computer aided process design of affinity membrane adsorbers. Presented at the 1st European Process Intensification Conference, September 19–20, Copenhagen, Denmark.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kreis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Beijeren, P., Kreis, P., Hoffmann, A. et al. Computer-aided process design of affinity membrane adsorbers: a case study on antibodies capturing. Chem. Pap. 62, 458–463 (2008). https://doi.org/10.2478/s11696-008-0057-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-008-0057-4

Keywords

Navigation