Skip to main content
Log in

Long-term operation of a domestic wastewater treatment plant with membrane filtration

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Possibilities of membrane technology and the use of membrane processes in wastewater treatment were investigated. The main focus was the monitoring of the starting phase of a domestic wastewater treatment plant. Experimental part of the study was realized at the municipal wastewater treatment plant (WWTP) Devínska Nová Ves — Bratislava during the period from February 2005 to September 2006. The system was stable without any external chemical treatment of the membrane modules and the permeate quality was very high. Observed decrease of COD and BOD5 values ranged between 91 % and 98 %. The process of nitrification was very successful considering its high efficiency (> 95 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahn, K., Song, K., & Cha, H. (1998). Application of tubular ceramic membranes for reuse of wastewater from buildings. Water Science and Technology, 38(4–5), 373–382.

    Article  CAS  Google Scholar 

  • APHA — AWWA — WPCF (1999). In L. S. Clescerl, A. E. Greenber, A. D. Eaton (Eds.) Standard methods of examination of water and wastewater, 20th Ed. Washington DC: American Public Health Association.

    Google Scholar 

  • Bouhabila, E. H., Ben Aďm, R., & Buisson, H. (1998). Microfiltration of activated sludge using submerged membrane with air bubbling (application to wastewater treatment). Desalination, 118, 315–322. DOI: 10.1016/S0011-9164(98)00156-8.

    Article  CAS  Google Scholar 

  • Cabassud, C., Laborie, S., Durand-Bourlier, L., & Lainé, J. M. (2001). Air sparging in ultrafiltration hollow fibers: relationship between flux enhancement, cake characteristics and hydrodynamic parameters. Journal of Membrane Science, 181, 57–69. DOI: 10.1016/S0376-7388(00)00538-X.

    Article  CAS  Google Scholar 

  • Chang, I.-S., & Judd, S. J. (2002). Air sparging of a submerged MBR for municipal wastewater treatment. Process Biochemistry, 37, 915–920. DOI: 10.1016/S0032-9592(01)00291-6.

    Article  CAS  Google Scholar 

  • Chang, I.-S., Le Clech, P., Jefferson, B., & Judd, S. (2002). Membrane fouling in membrane bioreactors for wastewater treatment. Journal of Environmental Engineering, 128, 1018–1029. DOI: 10.1061/(ASCE)0733-9372(2002)128:11(1018).

    Article  CAS  Google Scholar 

  • Cho, J., Song, K. G., Yun, H., Ahn, K. H., Kim, J. Y., & Chung, T. H. (2005). Quantitative analysis of biological effect on membrane fouling in submerged membrane bioreactor. Water Science and Technology, 51(6–7), 9–18.

    CAS  Google Scholar 

  • Chorvátová, M., Dvořáková, M., Pečenka, M., & Růžičková, I. (2007). Separation of activated sludge by means of the membrane technology. Vodní hospodářtví, 57, 239–243 (in Czech).

    Google Scholar 

  • Côté, P., Buisson, H., Pound, C., & Arakaki, G. (1997). Immersed membrane activated sludge for the reuse of municipal wastewater. Desalination, 113, 189–196. DOI: 10.1016/S0011-9164(97)00128-8.

    Article  Google Scholar 

  • European Commission. (1991). Council Directive 91/271/EEC, Urban waste-water treatment. Brussels: EC.

    Google Scholar 

  • European Commission. (2000). Directive 2000/60/EC, The water framework directive. Brussels: EC.

    Google Scholar 

  • Government of the Slovak Republic. (2005). Governmental Regulation No. 296/2005. Bratislava: NR SR (in Slovak).

    Google Scholar 

  • Judd, S. (2005). Fouling control in submerged membrane bioreactors. Water Science and Technology, 51(6–7), 27–34.

    CAS  Google Scholar 

  • Mercier-Bonin, M., Daubert, I., Léonard, D., Maranges, C., Fonade, C., & Lafforgue, C. (2001). How unsteady filtration conditions can improve the process efficiency during cell cultures in membrane bioreactors. Separating and Purification Technology, 22–23, 601–615. DOI: 10.1016/S1383-5866(00)00166-0.

    Article  Google Scholar 

  • Parliament of the Slovak Republic. (2004). Law No. 364/2005 Water Act. Bratislava: NR SR (in Slovak).

    Google Scholar 

  • Pinnekamp, J. & Friedrich, H. (2003). Hanbook on membrane technology for wastewater treatment. Aachen: FiW Verlag.

    Google Scholar 

  • Ueda, T., Hata, K., Kikuoka, Y., & Seino, O. (1997). Effects of aeration on suction pressure in a submerged membrane bioreactor. Water Research, 31, 489–494. DOI: 10.1016/S0043-1354(96)00292-8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Bodík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dančová, L., Bodík, I., Blšťáková, A. et al. Long-term operation of a domestic wastewater treatment plant with membrane filtration. Chem. Pap. 62, 451–457 (2008). https://doi.org/10.2478/s11696-008-0051-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-008-0051-x

Keywords

Navigation