Skip to main content
Log in

Preparation of nanocrystalline anatase TiO2 using basic sol-gel method

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Nanocrystalline titanium dioxide particles with anatase structure and high thermal stability have been synthesized using the basic sol-gel method. The particle size and morphology were refined under hydrothermal conditions in the presence of different concentrations of tetramethylammonium hydroxide (TMAH) at 210°C and 230°C. XRD and TEM analysis showed that the TiO2 particles obtained were homogeneous and monodispersive at low contents of TMAH. All intense peaks, clearly observed in the XRD patterns, were assigned to the anatase phase and no rutile phase was observed. At high contents of TMAH, nanoscale small (10–30 nm) and larger (>100 nm) TiO2 particles were one-pot synthesized. The nanocrystalline TiO2 particles synthesized by this method have good thermal stability. With the sintering temperature of up to 650°C, all the XRD peaks maintained good agreement with the anatase reference data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbé, C. J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V., & Gräzel, M. (1997). Nanocrystalline titanium oxide electrodes for photovoltaic applications. Journal of American Ceramic Society, 80, 3157–3171. DOI:10.1111/j.1151-2916.1997.tb03245.x.

    Article  Google Scholar 

  • Burnside, S. D., Shklover, V., Barbé, C., Comte, P., Arendse, F. Brooks, K., & Grätzel, M. (1998). Self-organization of TiO2 nanoparticles in thin films. Chemistry of Materials, 10, 2419–2425. DOI: 10.1021/cm980702b.

    Article  CAS  Google Scholar 

  • Chemseddine, A., & Moritz, T. (1999). Nanostructuring titania: control over nanocrystal structure, size, shape, and organization. European Journal of Inorganic Chemistry, 1999, 235–245. DOI: 10.1002/(SICI)1099-0682(19990202)1999:2〈235:: AIDEJIC235〉 3.0.CO;2-N.

  • Grätzel, M. (2004). Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemical Photobiology A: Chemistry, 164, 3–14. DOI:10.1016/j.jphotochem.2004.02.023.

    Article  CAS  Google Scholar 

  • Harizanov, O., & Harizanova, A. (2000). Development and investigation of sol-gel solutions for the formation of TiO2 coatings. Solar Energy Materials and Solar Cells, 63, 185–195. DOI: 10.1016/S0927-0248(00)00008-8.

    Article  CAS  Google Scholar 

  • Hore, S., Palomares, E., Smit, H., Bakker, N. J., Comte, P., Liska, P., Thampi, K. R., Kroon, J. M., Hinsch, A., & Durrant, J. R. (2005). Acid versus base peptization of mesoporous nanocrystalline TiO2 films: functional studies in dye sensitized solar cells. Journal of Materials Chemistry, 15, 412–418. DOI: 10.1039/b407963a.

    Article  CAS  Google Scholar 

  • Hu, L. H., Dai, S. Y., & Wang, K. J. (2003). Structural transformation of nanocrystalline titania grown by sol-gel technique and the growth kinetics of crystallites. Acta Physica Sinica, 52, 2135–2139 (in Chinese).

    CAS  Google Scholar 

  • Koelsch, M., Cassaignon, S., Minh, C. T. T., Guillemoles J. F., & Jolivet, J. P. (2004). Electrochemical comparative study of titania (anatase, brookite, and rutile) nanoparticles synthesized in aqueous medium. Thin Solid Films, 451–452, 86–92. DOI: 10.1016/j.tsf.2003.11.150.

    Article  CAS  Google Scholar 

  • Nakade, S., Matsuda, M., Kambe, S., Saito, Y., Kitamura, T., Sakata, T., Wada, Y., Mori, H., & Yanagida, S. (2002). Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells. Journal of Physical Chemistry B, 106, 10004–10010. DOI: 10.1021/jp020051d.

    Article  CAS  Google Scholar 

  • Nazeeruddin, M. K., Kay, A., Rodicio, I., Humphry-Baker, R., Muller, E., Liska, P., Vlachopoulos, N., & Grätzel, M. (1993). Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl, Br, I, CN, and SCN) on nanocrystalline TiO2 electrodes. Journal of the American Chemical Society, 115, 6382–6390. DOI: 10.1021/ja00067a063.

    Article  CAS  Google Scholar 

  • O’Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353, 737–740. DOI: 10.1038/353737a0.

    Article  CAS  Google Scholar 

  • Park, N. G., Schlichthörl, G., van de Lagemaat, J., Cheong, H. M., Mascarenhas, A., & Frank, A. J. (1999). Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4. Journal of Physical Chemistry B, 103, 3308–3314. DOI: 10.1021/jp984529i.

    Article  CAS  Google Scholar 

  • Park, N. G., van de Lagemaat, J., & Frank, A. J. (2000). Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells. Journal of Physical Chemistry B, 104, 8989–8994. DOI: 10.1021/jp994365l.

    Article  CAS  Google Scholar 

  • Uchida, S., Tomiha, M., Masaki, N., Miyazawa, A., & Takizawa, H. (2004). Preparation of TiO2 nanocrystalline electrode for dye-sensitized solar cells by 28 GHz microwave irradiation. Solar Energy Materials and Solar Cells, 81, 135–139. DOI: 10.1016 /j.solmat.2003.08.020.

    Article  CAS  Google Scholar 

  • Wang, R. B., Dai, S. Y., & Wang, K. J. (2002). The influence of pH to prepare TiO2 by sol-gel and the characteristics. Journal of Functional Materials, 33, 296–297.

    CAS  Google Scholar 

  • Wang, P., Zakeeruddin, S. M., Comte, P., Charvet, R., Humphry-Baker, R., & Grätzel, M. (2003). Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals. Journal of Physical Chemistry B, 107, 14336–14341. DOI: 10.1021/jp0365965.

    Article  CAS  Google Scholar 

  • Wang, Z.-S., Kawauchi, H., Kashima, T., & Arakawa, H. (2004). Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordination Chemistry Reviews, 248, 1381–1389. DOI: 10.1016 /j.ccr.2004.03.006.

    Article  CAS  Google Scholar 

  • Wang, Z.-S., Yamaguchi, T., Sugihara, H., & Arakawa, H. (2005). Significant efficiency improvement of the black dyesensitized solar cell through protonation of TiO2 films. Langmuir, 21, 4272–4276. DOI: 10.1021/la050134w.

    Article  CAS  Google Scholar 

  • Yang, J., Li, D., Wu, D. H., Yang, X. J., Lu, L. D., & Wang, X. (2001). Preparation of doped nanocrystalline TiO2 and microstructural control by stearic acid sol-gel method. Journal of Inorganic Materials, 16, 550–554.

    CAS  Google Scholar 

  • Zukalová, M., Zukal, A., Kavan, L. Nazeeruddin, M. K., Liska, P., & Grätzel, M. (2005). Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dyesensitized solar cells. Nano Letters, 5, 1789–1792. DOI: 10.1021/nl051401l.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Bao-Xue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi-Tao, X., Bao-Xue, Z., Long-Hai, L. et al. Preparation of nanocrystalline anatase TiO2 using basic sol-gel method. Chem. Pap. 62, 382–387 (2008). https://doi.org/10.2478/s11696-008-0040-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-008-0040-0

Keywords

Navigation