Advertisement

Chemical Papers

, Volume 62, Issue 3, pp 334–338 | Cite as

Study of CuI catalyzed coupling reactions of aryl bromides with imidazole and aliphatic amines under microwave dielectric heating

  • Eva VeverkováEmail author
  • Štefan Toma
Short Communication

Abstract

Amination of a variety of functionalized aryl bromides with imidazole and primary and secondary amines was accomplished using a CuI/amino acid catalyst system under microwave heating. Application of microwave irradiation shortened the reaction time from 25–40 h to 6–20 min. Good to very good yields of the corresponding coupling products were obtained when imidazole and secondary amines were used as starting materials. In case of primary amines, the outcome of the reaction was dependent on the character of the substituent on aryl bromide.

Keywords

arylamines coupling reactions microwave irradiation CuI/amino acid catalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antilla, J. C., Klapars, A., & Buchwald, S. L. (2002). The copper-catalyzed N-arylation of indoles. Journal of the American Chemical Society, 124, 11684–11688. DOI: 10.1021/ja027433h.CrossRefGoogle Scholar
  2. Cai, Q., Zhu, W., Zhang, H., Zhang, Y., & Ma, D. (2005). Preparation of N-aryl compounds by amino acid-promoted Ullmann-type coupling reaction. Synthesis, 2005, 496–499. DOI: 10.1055/s-2004-831196.Google Scholar
  3. D’Angelo, N. D., Peterson, J. J., Booker, S. K., Fellows, I., Dominguez, C., Hungate, R., Reider, P. J., & Kim, T.-S. (2006). Effect of microwave heating on Ullman-type heterocycle-aryl ether synthesis using chloro-heterocycles. Tetrahedron Letters, 47, 5045–5048. DOI: 10.1016/j.tetlet.2006.05.103.CrossRefGoogle Scholar
  4. Han, C., Shen, R., Su, S., & Porco, J. A., Jr. (2004). Copper-mediated synthesis of N-acyl vinylogous carbamic acids and derivatives: Synthesis of antibiotic CJ-15,801. Organic Letters, 6, 27–30. DOI: 10.1021/ol0360041.CrossRefGoogle Scholar
  5. Jensen, T. A., Liang, X., Tanner, D., & Skjaerbaek, N. (2004). Rapid and efficient microwave-assisted synthesis of aryl aminobenzophenones using Pd-catalyzed amination. Journal of Organic Chemistry, 69, 4936–4947. DOI: 10.1021/jo049572i.CrossRefGoogle Scholar
  6. Kamal, A., Reddy, D. R., & Rajendar (2006). Polyethylene glycol (PEG) as an efficient recyclable medium for the synthesis of β-amino sulfides. Tetrahedron Letters, 47, 2261–2264. DOI: 10.1016/j.tetlet.2006.01.086.CrossRefGoogle Scholar
  7. Kappe, C. O. (2004). Controlled microwave heating in modern organic synthesis. Angewandte Chemie International Edition, 43, 6250–6284. DOI: 10.1002/anie.200400655.CrossRefGoogle Scholar
  8. Kunz, K., Scholz, U., & Ganzer, D. (2003). Renaissance of Ullmann and Goldberg reactions — progress in copper catalyzed C-N-, C-O-and C-S-coupling. Synlett, 2003, 2428–2439. DOI: 10.1055/s-2003-42473.Google Scholar
  9. Ley, S. V., & Thomas, A. W. (2003). Modern synthetic methods for copper-mediated C(aryl)—O, C(aryl)—N, and C(aryl)—S bond formation. Angewandte Chemie International Edition, 42, 5400–5449. DOI: 10.1002/anie.200300594.CrossRefGoogle Scholar
  10. Li, F., Wang, Q., Ding, Z., & Tao, F. (2003). Microwave-assisted synthesis of diaryl ethers without catalyst. Organic Letters, 5, 2169–2171. DOI: 1021/ol0346436.CrossRefGoogle Scholar
  11. Li, F., Meng, Q., Chen, H., Li, Z., Wang, Q., & Tao, F. (2005). Synthesis of diaryl ethers, diaryl sulfides, heteroaryl ethers and heteroaryl sulfides under microwave dielectric heating. Synthesis, 2005, 1305–1313. DOI: 10.1055/s-2005-865321.Google Scholar
  12. Lindley, J. (1984). Tetrahedron report numbers 163: Copper assisted nucleophilic substitution of aryl halogen. Tetrahedron, 40, 1433–1456. DOI: 10.1016/S0040-4020(01)91791-0.CrossRefGoogle Scholar
  13. Lindström, P., Tierney, J., Wathey, B., & Westman, J. (2001). Microwave assisted organic synthesis — a review. Tetrahedron, 57, 9225–9283. DOI: 10.1016/S0040-4020(01)00906-1.CrossRefGoogle Scholar
  14. Lv, X., Wang, Z., & Bao W. (2006). Cul catalyzed C-N bond forming reactions between aryl/heteroaryl bromides and imidazoles in [Bmim]BF4. Tetrahedron, 62, 4756–4761. DOI: 10.1016/j.tet.2006.03.026.CrossRefGoogle Scholar
  15. Ma, D., Cai, Q., & Zhamg, H. (2003). Mild method for Ullmann coupling reaction of amines and aryl halides. Organic Letters, 5, 2453–2455. DOI: 10.1021/ol036584.CrossRefGoogle Scholar
  16. Perreux, L., & Loupy, A. (2001). A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron, 57, 9199–9223. DOI: 10.1016/S0040-4020(01)00905-X.CrossRefGoogle Scholar
  17. Sauvagnat, B., Lamaty, F., Lazaro, R., & Martinez, J. (2000). Poly(ethylene glycol) as solvent and polymer support in the microwave assisted parallel synthesis of amino acid derivatives. Tetrahedron Letters, 41, 6371–6375. DOI: 10.1016/S0040-4039(00)01067-4.CrossRefGoogle Scholar
  18. Van Allen, D., & Venkataraman, D. (2003). Copper-catalyzed synthesis of unsymetrical triarylphosphines. Journal of Organic Chemistry, 68, 4590–4593. DOI: 10.1021/jo0343376.CrossRefGoogle Scholar
  19. Vasudevan, V. N., & Rajender, S. V. (2001). Microwave-accelerated Suzuki cross-coupling reaction in polyethylene glycol (PEG). Green Chemistry, 3, 146–148. DOI: 10.1039/b102337n.CrossRefGoogle Scholar
  20. Wolfe, J. P., Wagaw, S., Marcoux, J.-F., & Buchwald, S. L. (1998). Rational development of practical catalysts for aromatic carbon-nitrogen bond formation. Accounts of Chemical Research, 31, 805–818. DOI: 10.1021/ar9600650.CrossRefGoogle Scholar
  21. Wu, Y.-J., He, H., & L’Heureux, A. (2003). Copper-catalyzed coupling of (S)-1-(3-bromophenyl)-ethylamine and N-H containing heteroarenes using microwave heating. Tetrahedron Letters, 44, 4217–4218. DOI: 10.1016/S0040-4039(03)00898-0.CrossRefGoogle Scholar
  22. Zhang, H., Cai, Q., & Ma, D. (2005). Amino acid promoted CuI-catalyzed C-N bond formation between aryl halides and amines or N-containing heterocycles. Journal of Organic Chemistry, 70, 5164–5173. DOI: 10.1021/jo0504464.CrossRefGoogle Scholar

Copyright information

© Versita 2008

Authors and Affiliations

  1. 1.Department of Organic Chemistry, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia

Personalised recommendations