Chemical Papers

, Volume 62, Issue 3, pp 318–322 | Cite as

Spectrofluorimetric determination of uric acid based on its activation of catalytic oxidation of pyronine Y

  • Suling FengEmail author
  • Xueping Liu
Short Communication


A novel kinetic spectrofluorimetric method for the determination of uric acid based on the activation effect of uric acid on the Cu(II) ion catalyzed oxidation of pyronine Y by hydrogen peroxide was developed. The influence of different buffer solutions was tested and the Britton-Robinson buffer solution with pH 2.2 was found to be the optimum. The detection limit and the linear range for uric acid are 0.09 μg mL−1 and 0.3–3.0 μg mL−1, respectively. The RSD for eleven determinations of 1.6 μg mL−1 uric acid was 1.6 %. Satisfactory results were obtained when using this method of uric acid determination in human urine.


kinetic spectrofluorimetric method activation uric acid pyronine Y 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akyilmaz, E., Sezginturk, M. K., & Dinckaya, E. (2003). A biosensor based on urate oxidase-peroxidase coupled enzyme system for uric acid determination in urine. Talanta, 61, 73–79. DOI: 10.1016/S0039-9140(03)00239-X.CrossRefGoogle Scholar
  2. Chen, Y. M., Pietrzyk, R. A., & Whitson, P. A. (1997). Quantification of urinary uric acid in the presence of thymol and thimerosal by high-performance liquid chromatography. Journal of Chromatography A, 763, 187–192. DOI: 10.1016/S0021-9673(96)00740-6.CrossRefGoogle Scholar
  3. Czauderna, M., & Kowalczyk, J. (1997). Simultaneous measurement of allantoin, uric acid, xanthine and hypoxanthine in blood by high-performance liquid chromatography. Journal of Chromatography B, 704, 89–98. DOI: 10.1016/S0378-4347(97)00459-3.CrossRefGoogle Scholar
  4. Dobay, R., Harsanyi, G., & Visy, C. (1999). Detection of uric acid with a new type of conducting polymer-based enzymatic sensor by bipotentiostatic technique. Analytica Chimica Acta, 385, 187–194. DOI: 10.1016/S0003-2670(98)00662-X.CrossRefGoogle Scholar
  5. Frebel, H., Chemnitius, G. C., Cammann, K., Kakerow, R., Rospert, M., & Mokwa, W. (1997). Multianalyte sensor for the simultaneous determination of glucose, l-lactate and uric acid based on a microelectrode array. Sensors and Actuators B: Chemical, 43, 87–93. DOI: 10.1016/S0925-4005(97)00133-0.CrossRefGoogle Scholar
  6. Galban, J., Andreu, Y., Almenara, M. J., Marcos, S, & Castillo, J. R. (2001). Direct determination of uric acid in serum by a fluorometric-enzymatic method based on uricase. Talanta, 54, 847–854. DOI: 10.1016/S0039-9140(01)00335-6.CrossRefGoogle Scholar
  7. Gilmartin, M. A. T., Hart, J. P., & Birch, B. (1992). Voltammetric and amperometric behavior of uric-acid at bare and surface-modified screen-printed electrodes: studies towards a disposable uric-acid sensor. The Analyst, 117, 1299–1303. DOI: 10.1039/AN9921701299.CrossRefGoogle Scholar
  8. Hong, H. C., & Huang, H. J. (2003). Flow injection analysis of uric acid with a uricase-and horseradish peroxidase-coupled Sepharose column based luminol chemiluminescence system. Analytica Chimica Acta, 499, 41–46. DOI: 10.1016/S0003-2670(03)00950-4.CrossRefGoogle Scholar
  9. Hoshi, T., Saiki, H., & Anzai, J. I. (2003). Amperometric uric acid sensors based on polyelectrolyte multilayer films. Talanta, 61, 363–368. DOI: 10.1016/S0039-9140(03)00303-5.CrossRefGoogle Scholar
  10. Jen, J. F., Hsiao, S. L., & Liu, K. H. (2002). Simultaneous determination of uric acid and creatinine in urine by an eco-friendly solvent-free high performance liquid chromatographic method. Talanta, 58, 711–717. DOI: 10.1016/S0039-9140(02)00377-6.CrossRefGoogle Scholar
  11. Li, Z., Feng, M., & Lu, J. (1998). KMnO4-octylphenyl polygylcol, ether chemiluminescence system for flow injection analysis of uric acid in urine. Microchemical Journal, 59, 278–283. DOI: 10.1006/mchj.1997.1537.CrossRefGoogle Scholar
  12. Matos, R. C., Augelli, M. A., Lago, C. L., & Angnes, L. (2000). Flow injection analysis — amperometric determination of ascorbic and uric acids in urine using arrays of gold microelectrodes modified by electrodeposition of palladium. Analytica Chimica Acta, 404, 151–157. DOI: 10.1016/S0003-2670(99)00674-1.CrossRefGoogle Scholar
  13. Roy, P. R., Okajima, T., & Ohsaka, T. (2004). Simultaneous electrochemical detection of uric acid and ascorbic acid at a poly(N,N-dimethylaniline) film-coated GC electrode. Journal of Electroanalytical Chemistry, 561, 75–82. DOI: 10.1016/j.jelechem.2003.07.003.CrossRefGoogle Scholar
  14. Sun, Y., Fei, J., Wu, K., & Hu, S. (2003). Simultaneous electrochemical determination of xanthine and uric acid at a nanoparticle film electrode. Analytical and Bioanalytical Chemistry, 375, 544–549. DOI: 10.1007/s00216-002-1743-7.Google Scholar
  15. Wang, Z., Zhang, D., Zhang, Y., & Zhou, S. (2002). A novel poly(4-aminopyridine)-modified electrode for selective detection of uric acid in the presence of ascorbic acid. Analytical Letters, 35, 1453–1464. DOI: 10.1081/AL-120006722.CrossRefGoogle Scholar
  16. Yao, D., Vlessidis, A. G., & Evmiridis, N. P. (2003). Microdialysis sampling and monitoring of uric acid in vivo by a chemiluminescence reaction and an enzyme on immobilized chitosan support membrane. Analytica Chimica Acta, 478, 23–30. DOI: 10.1016/S0003-2670(02)01484-8.CrossRefGoogle Scholar
  17. Zen, J. M., & Chen, P. J. (1997). A selective voltammetric method for uric acid and dopamine detection using clay-modified electrodes. Analytical Chemistry, 69, 5087–5093. DOI: 10.1021/ac9703562.CrossRefGoogle Scholar
  18. Zhang, G., Cheng, D. X., & Feng, S. (1993). Study on catalytic fluorometric determination of trace manganese. Talanta, 40, 1041–1047. DOI: 10.1016/0039-9140(93)80164-M.CrossRefGoogle Scholar
  19. Zhang, Y. Q., Shen, W. D., Gu, R. A., Zhu, J., & Xue, R. Y. (1998). Amperometric biosensor for uric acid based on uricase-immobilized silk fibroin membrane. Analytica Chimica Acta, 369, 123–128. DOI: 10.1016/S0003-2670(98)00236-0.CrossRefGoogle Scholar

Copyright information

© Versita 2008

Authors and Affiliations

  1. 1.College of Chemistry and Environmental ScienceHenan Normal UniversityXinxiangChina

Personalised recommendations