Skip to main content
Log in

Spectrofluorimetric determination of uric acid based on its activation of catalytic oxidation of pyronine Y

  • Short Communication
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A novel kinetic spectrofluorimetric method for the determination of uric acid based on the activation effect of uric acid on the Cu(II) ion catalyzed oxidation of pyronine Y by hydrogen peroxide was developed. The influence of different buffer solutions was tested and the Britton-Robinson buffer solution with pH 2.2 was found to be the optimum. The detection limit and the linear range for uric acid are 0.09 μg mL−1 and 0.3–3.0 μg mL−1, respectively. The RSD for eleven determinations of 1.6 μg mL−1 uric acid was 1.6 %. Satisfactory results were obtained when using this method of uric acid determination in human urine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Akyilmaz, E., Sezginturk, M. K., & Dinckaya, E. (2003). A biosensor based on urate oxidase-peroxidase coupled enzyme system for uric acid determination in urine. Talanta, 61, 73–79. DOI: 10.1016/S0039-9140(03)00239-X.

    Article  CAS  Google Scholar 

  • Chen, Y. M., Pietrzyk, R. A., & Whitson, P. A. (1997). Quantification of urinary uric acid in the presence of thymol and thimerosal by high-performance liquid chromatography. Journal of Chromatography A, 763, 187–192. DOI: 10.1016/S0021-9673(96)00740-6.

    Article  CAS  Google Scholar 

  • Czauderna, M., & Kowalczyk, J. (1997). Simultaneous measurement of allantoin, uric acid, xanthine and hypoxanthine in blood by high-performance liquid chromatography. Journal of Chromatography B, 704, 89–98. DOI: 10.1016/S0378-4347(97)00459-3.

    Article  CAS  Google Scholar 

  • Dobay, R., Harsanyi, G., & Visy, C. (1999). Detection of uric acid with a new type of conducting polymer-based enzymatic sensor by bipotentiostatic technique. Analytica Chimica Acta, 385, 187–194. DOI: 10.1016/S0003-2670(98)00662-X.

    Article  CAS  Google Scholar 

  • Frebel, H., Chemnitius, G. C., Cammann, K., Kakerow, R., Rospert, M., & Mokwa, W. (1997). Multianalyte sensor for the simultaneous determination of glucose, l-lactate and uric acid based on a microelectrode array. Sensors and Actuators B: Chemical, 43, 87–93. DOI: 10.1016/S0925-4005(97)00133-0.

    Article  Google Scholar 

  • Galban, J., Andreu, Y., Almenara, M. J., Marcos, S, & Castillo, J. R. (2001). Direct determination of uric acid in serum by a fluorometric-enzymatic method based on uricase. Talanta, 54, 847–854. DOI: 10.1016/S0039-9140(01)00335-6.

    Article  CAS  Google Scholar 

  • Gilmartin, M. A. T., Hart, J. P., & Birch, B. (1992). Voltammetric and amperometric behavior of uric-acid at bare and surface-modified screen-printed electrodes: studies towards a disposable uric-acid sensor. The Analyst, 117, 1299–1303. DOI: 10.1039/AN9921701299.

    Article  CAS  Google Scholar 

  • Hong, H. C., & Huang, H. J. (2003). Flow injection analysis of uric acid with a uricase-and horseradish peroxidase-coupled Sepharose column based luminol chemiluminescence system. Analytica Chimica Acta, 499, 41–46. DOI: 10.1016/S0003-2670(03)00950-4.

    Article  CAS  Google Scholar 

  • Hoshi, T., Saiki, H., & Anzai, J. I. (2003). Amperometric uric acid sensors based on polyelectrolyte multilayer films. Talanta, 61, 363–368. DOI: 10.1016/S0039-9140(03)00303-5.

    Article  CAS  Google Scholar 

  • Jen, J. F., Hsiao, S. L., & Liu, K. H. (2002). Simultaneous determination of uric acid and creatinine in urine by an eco-friendly solvent-free high performance liquid chromatographic method. Talanta, 58, 711–717. DOI: 10.1016/S0039-9140(02)00377-6.

    Article  CAS  Google Scholar 

  • Li, Z., Feng, M., & Lu, J. (1998). KMnO4-octylphenyl polygylcol, ether chemiluminescence system for flow injection analysis of uric acid in urine. Microchemical Journal, 59, 278–283. DOI: 10.1006/mchj.1997.1537.

    Article  CAS  Google Scholar 

  • Matos, R. C., Augelli, M. A., Lago, C. L., & Angnes, L. (2000). Flow injection analysis — amperometric determination of ascorbic and uric acids in urine using arrays of gold microelectrodes modified by electrodeposition of palladium. Analytica Chimica Acta, 404, 151–157. DOI: 10.1016/S0003-2670(99)00674-1.

    Article  CAS  Google Scholar 

  • Roy, P. R., Okajima, T., & Ohsaka, T. (2004). Simultaneous electrochemical detection of uric acid and ascorbic acid at a poly(N,N-dimethylaniline) film-coated GC electrode. Journal of Electroanalytical Chemistry, 561, 75–82. DOI: 10.1016/j.jelechem.2003.07.003.

    Article  CAS  Google Scholar 

  • Sun, Y., Fei, J., Wu, K., & Hu, S. (2003). Simultaneous electrochemical determination of xanthine and uric acid at a nanoparticle film electrode. Analytical and Bioanalytical Chemistry, 375, 544–549. DOI: 10.1007/s00216-002-1743-7.

    CAS  Google Scholar 

  • Wang, Z., Zhang, D., Zhang, Y., & Zhou, S. (2002). A novel poly(4-aminopyridine)-modified electrode for selective detection of uric acid in the presence of ascorbic acid. Analytical Letters, 35, 1453–1464. DOI: 10.1081/AL-120006722.

    Article  CAS  Google Scholar 

  • Yao, D., Vlessidis, A. G., & Evmiridis, N. P. (2003). Microdialysis sampling and monitoring of uric acid in vivo by a chemiluminescence reaction and an enzyme on immobilized chitosan support membrane. Analytica Chimica Acta, 478, 23–30. DOI: 10.1016/S0003-2670(02)01484-8.

    Article  CAS  Google Scholar 

  • Zen, J. M., & Chen, P. J. (1997). A selective voltammetric method for uric acid and dopamine detection using clay-modified electrodes. Analytical Chemistry, 69, 5087–5093. DOI: 10.1021/ac9703562.

    Article  CAS  Google Scholar 

  • Zhang, G., Cheng, D. X., & Feng, S. (1993). Study on catalytic fluorometric determination of trace manganese. Talanta, 40, 1041–1047. DOI: 10.1016/0039-9140(93)80164-M.

    Article  CAS  Google Scholar 

  • Zhang, Y. Q., Shen, W. D., Gu, R. A., Zhu, J., & Xue, R. Y. (1998). Amperometric biosensor for uric acid based on uricase-immobilized silk fibroin membrane. Analytica Chimica Acta, 369, 123–128. DOI: 10.1016/S0003-2670(98)00236-0.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suling Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, S., Liu, X. Spectrofluorimetric determination of uric acid based on its activation of catalytic oxidation of pyronine Y. Chem. Pap. 62, 318–322 (2008). https://doi.org/10.2478/s11696-008-0029-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-008-0029-8

Keywords

Navigation