Advertisement

Chemical Papers

, Volume 62, Issue 3, pp 313–317 | Cite as

Efficient cyclodehydration of diethylene glycol in Brønsted acidic ionic liquids

  • Yuan-Yuan Wang
  • Wei Li
  • Li-Yi DaiEmail author
Original Paper

Abstract

Cyclodehydration of diethylene glycol using various Brønsted acidic ionic liquids as dual solvent-catalysts has been studied for the first time. Better results were obtained in the presence of 1-butyl-3-methylimidazolium hydrogen sulfate ([PSmim]HSO4) compared with other Brønsted acidic ionic liquids. Effects of the reaction conditions such as reaction temperature, reaction time and molar ratio of ionic liquid to diethylene glycol have been investigated. High diethylene glycol conversion, 97.0 %, and high 1,4-dioxane selectivity, 89.3 %, were obtained in [PSmim]HSO4 under optimum conditions. Hammett method was used to determine the acidity order of these ionic liquids and the results were consistent with the catalytic activities observed in the cyclodehydration reaction. Utilization of Brønsted acidic ionic liquids as dual solvent-catalysts has some advantages, e.g. high conversion of DEG, easy preparation and reuse of ionic liquids, avoiding toxic catalysts and solvents.

Keywords

Brønsted acidic ionic liquids cyclodehydration diethylene glycol 1,4-dioxane acidity characterization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dupont, J., Souza R. F., & Suarez, P. A. Z. (2002). Ionic liquid (molten salt) phase organometallic catalysis. Chemical Reviews, 102, 3667–3692. DOI: 10.1021/cr010338r.CrossRefGoogle Scholar
  2. Fraga-Dubreuil, J., Bourahla, K., Rahmouni, M., Bazureau, J. P., & Hamelin, J. (2002). Catalysed esterifications in room temperature ionic liquids with acidic counteranion as recyclable reaction media. Catalysis Communications, 3, 185–190. DOI: 10.1016/S1566-7367(02)00087-0.CrossRefGoogle Scholar
  3. Gu, Y. L., Zhang, J., Duan, Z.Y., & Deng, Y. Q. (2005). Pechmann reaction in non-chloroaluminate acidic ionic liquids under solvent-free conditions. Advanced Synthesis & Catalysis, 347, 512–516. DOI: 10.1002/adsc.200404316.CrossRefGoogle Scholar
  4. Heuvelsland, A. J. (1988). U.S. Patent No. 4,764,626, Washington, D.C.: U.S. Patent and Trademark Office.Google Scholar
  5. Kitayama, Y., Kamimura, M., Wakui, K., Kanamori, M., Kodama, T., & Abe, J. (1999). Cyclodehydration of diethylene glycol DEG catalyzed by clay mineral sepiolite. Journal of Molecular Catalysis A: Chemical, 142, 237–245. DOI: 10.1016/S1381-1169(98)00290-8.CrossRefGoogle Scholar
  6. Li, H. L., Yu, S. T., Liu, F. S., Xie, C. X., & Li, L. (2007). Synthesis of dioctyl phthalate using acid functionalized ionic liquid as catalyst. Catalysis Communications, 8, 1759–1762. DOI: 10.1016/j.catcom.2007.01.029.CrossRefGoogle Scholar
  7. Park, Y. M., Pyo, H., Park, S. J., & Park S. K. (2005). Development of the analytical method for 1,4-dioxane in water by liquid-liquid extraction. Analytica Chimica Acta, 548, 109–115. DOI: 10.1016/j.aca.2005.05.057.CrossRefGoogle Scholar
  8. Qiao, K., Hagiwara, H., & Yokoyama, C. (2006). Acidic ionic liquid modified silica gel as novel solid catalysts for esterification and nitration reactions. Journal of Molecular Catalysis A: Chemical, 246, 65–69. DOI: 10.1016/j.molcata.2005.07.031.CrossRefGoogle Scholar
  9. Rogers, R. D., & Seddon K. R. (2003). Ionic liquids-solvents of the future. Science, 302, 792–793. DOI: 10.1126/science.1090313.CrossRefGoogle Scholar
  10. Schneider, O., Bund, A., Ispas, A., Borissenko, N., El Abedin, S. Z., & Endres, F. (2005). An EQCM study of the electropoly-merization of benzene in an ionic liquid and ion exchange characteristics of the resulting polymer film. Journal of Physical Chemistry B, 109, 7159–7168. DOI: 10.1021/jp044892r.CrossRefGoogle Scholar
  11. Strehmel, V., Laschewsky, A., Wetzel, H., & Gornitz, E. (2006). Free radical polymerization of n-butyl methacrylate in ionic liquids. Macromolecules, 39, 923–930. DOI: 10.1021/ma0516945.CrossRefGoogle Scholar
  12. Thomazeau, C., Bourbigou, H. O., Magna, L., Luts, S., & Gilbert, B. (2003). Determination of an acidic scale in room temperature ionic liquids. Journal of the American Chemical Society, 125, 5264–5265. DOI: 10.1021/ja0297382.CrossRefGoogle Scholar
  13. Wali, A., Pillai, S. M., Unnikrishnan, S., & Satish S. (1996). HZSM-5 catalyzed cyclodehydration of diethylene glycol and its derivatives. Journal of Molecular Catalysis A: Chemical, 109, 149–155. DOI: 10.1016/1381-1169(95)00280-4.CrossRefGoogle Scholar
  14. Wang, Y. Y., Jiang, D., Wang, R., & Dai, L. Y. (2007). Application of Et3NHCl-AlCl3 ionic liquid as an initiator in cationic copolymerization of 1,3-pentadiene with styrene. Reaction Kinetics and Catalysis Letters, 90, 69–76. DOI: 10.1007/s11144-007-4999-2.CrossRefGoogle Scholar
  15. Wang, Y. Y., Wang, R., Liang, C. W., & Dai, L. Y. (2007). Preparation of fructone catalyzed by water-soluble Brønsted acid ionic liquids. Chinese Chemical Letters, 18, 24–26. DOI: 10.1016/j.cclet.2006.11.023.CrossRefGoogle Scholar
  16. Zhang, S. M., Hou, Y. W., Huang, W. G., & Shan, Y. K. (2005). Preparation and characterization of novel ionic liquid based on benzotriazolium cation. Electrochimica Acta, 50, 4097–4103. DOI: 10.1016/j.electacta.2005.01.025.CrossRefGoogle Scholar
  17. Zhao, G. Y., Jiang, T., Gao, H. X., Han, B. X., Huang, J., & Sun, D. H. (2004). Mannich reaction using acid ionic liquids as catalysts and solvents. Green Chemistry, 6, 75–77. DOI: 10.1039/b309700b.CrossRefGoogle Scholar
  18. Zhu, H. P., Yang, F., Tang, J., & He, M. Y. (2003). Brønsted acid ionic liquid 1-methylimidazolium tetrafluoroborate: a green catalyst and recyclable medium for esterification. Green Chemistry, 5, 38–39. DOI: 10.1039/b209248b.CrossRefGoogle Scholar

Copyright information

© Versita 2008

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of ChemistryEast China Normal UniversityShanghaiChina
  2. 2.School of Chinese MedicineSDUTCMJinanChina

Personalised recommendations