Chemical Papers

, Volume 62, Issue 3, pp 302–312 | Cite as

Prediction of excess molar volumes of binary mixtures of organic compounds from refractive indices

  • Ivona R. Radović
  • Mirjana Lj. KijevčaninEmail author
  • Marijan Z. Gabrijel
  • Slobodan P. Šerbanović
  • Bojan D. Djordjević
Original Paper


The excess molar volumes of 51 binary mixtures containing diverse groups of organic compounds: alcohols (methanol, ethanol, propan-1-ol, butan-1-ol, pentan-1-ol, hexan-1-ol, and heptan-1-ol), (cyclo-) alkanes (hexane, heptane, octane, nonane, decane, undecane, dodecane, and cyclohexane), esters (diethyl carbonate and ethyl chloroacetate), aromatics (o-xylene, m-xylene, p-xylene, and ethylbenzene), ketones (acetone), and ethers (anisole), were predicted from the refractive index data, using three types of equations coupled with several different mixing rules for refractive index calculations: the Lorentz-Lorenz, Dale-Gladstone, Eykman, Arago-Biot, Newton, and the Oster. These systems were chosen since they belong to different classes of organic species forming molecular interactions and intermolecular forces during mixing resulting in positive or negative, smaller or larger deviations from ideal behaviour. The obtained results were analysed in terms of the applied equation and mixing rule, the nature of compounds of the mixtures and the influence of alkyl chain length of the alkane or alcohol molecule.


excess molar volume refractive index prediction binary systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Jimaz, A. S., Al-Kandary, J. A., Abdul-latif, A. M., & Al-Zanki, A. M. (2005). Physical properties of {anisole + nalkanes} at temperatures between (293.15 and 303.15) K. The Journal of Chemical Thermodynamics, 37, 631–642. DOI: 10.1016/j.jct.2004.09.021.CrossRefGoogle Scholar
  2. Arancibia, E. L., & Katz, M. (1993). Relationship between excess molar volume and refractive index in binary non-electrolyte mixtures. Physics & Chemistry of Liquids, 26, 107–112. DOI: 10.1080/00319109308030824.CrossRefGoogle Scholar
  3. Brocos, P., Piñeiro, A., Bravo, R., & Amigo, A. (2003). Refractive indices, molar volumes and molar refractions of binary liquid mixtures: concepts and correlations. Physical Chemistry Chemical Physics, 5, 550–557. DOI: 10.1039/b208765k.CrossRefGoogle Scholar
  4. Brocos, P., & Amigo, A. (2005). Critical review on treatment of refractive indices and related properties in liquid mixtures. In S. G. Pandalai (Ed.), Recent research developments in chemical engineering (Vol. 6, pp. 47–84). Trivandrum, India: Transworld Research Network.Google Scholar
  5. Casas, L. M., Touriño, A., Orge, B., Marino, G., Iglesias, M., & Tojo, J. (2002). Thermophysical properties of acetone or methanol + n-alkane (C9 to C12) mixtures. Journal of Chemical & Engineering Data, 47, 887–893. DOI: 10.1021/je0103059.CrossRefGoogle Scholar
  6. Díaz, C., Orge, B., Marino, G., & Tojo, J. (2001). Densities, refractive indices, and derived properties of (cyclohexane, or n-heptane + an aromatic hydrocarbon) at T = 298.15 K. Journal of Chemical Thermodynamics, 33, 1015–1026. DOI: 10.1006/jcht.2000.0830.CrossRefGoogle Scholar
  7. Fontao, M. J., & Iglesias, M. (2002). Effect of temperature on the refractive index of aliphatic hydroxylic mixtures (C2-C3). International Journal of Thermophysics, 23, 513–527. DOI: 10.1023/A:1015113604024.CrossRefGoogle Scholar
  8. Heller, W. J. (1965). Remarks on refractive index mixture rules. The Journal of Physical Chemistry, 69, 1123–1129. DOI: 10.1021/j100888a006.CrossRefGoogle Scholar
  9. Iglesias, T. P., Legido, J. L., Pereira, S. M., de Cominges, B., & Paz Andrade, M. I. (2000). Relative permittivities and refractive indices on mixing for (n-hexane + 1-pentanol, or 1-hexanol, or 1-heptanol) at T=298.15 K. Journal of Chemical Thermodynamics, 32, 923–930. DOI: 10.1006/jcht.2000.0661.CrossRefGoogle Scholar
  10. Nakata, M., & Sakurai, M. (1987). Refractive index and excess volume for binary liquid mixtures. Part 1. Analyses of new and old data for binary mixtures. Journal of the Chemical Society, Faraday Transactions 1, 83, 2449–2457. DOI: 10.1039/F19878302449.CrossRefGoogle Scholar
  11. Nayak, J. N., Aralaguppi, M. I., & Aminabhavi, T. M. (2001). Density, viscosity, refractive index, and speed of sound for the binary mixtures of ethyl chloroacetate with n-alkanes (C6 to C12) at (298.15, 303.15, and 308.15) K. Journal of Chemical & Engineering Data, 46, 891–896. DOI: 10.1021/je010020w.CrossRefGoogle Scholar
  12. Orge, B., Iglesias, M., Rodríguez, A., Canosa, J. M., & Tojo, J. (1997). Mixing properties of (methanol, ethanol, or 1-propanol) with (n-pentane, n-hexane, n-heptane and n-octane) at 298.15 K. Fluid Phase Equilbria, 133, 213–227. DOI: 10.1016/S0378-3812(97)00031-9.CrossRefGoogle Scholar
  13. Piñeiro, Á., Brocos, P., Amigo, A., Pintos, M., & Bravo, R. (1999). Surface tensions and refractive indices of (tetrahydrofuran + n-alkanes) at T=298.15 K. The Journal of Chemical Thermodynamics, 31, 931–942. DOI: 10.1006/jcht.1999.0517.CrossRefGoogle Scholar
  14. Piñeiro, Á., Brocos, P., Amigo, A., Pintos, M., & Bravo, R. (2000). Prediction of excess volumes and excess surface tensions from experimental refractive indices. Physics & Chemistry of Liquids, 38, 251–260. DOI: 10.1080/00319100008030275.CrossRefGoogle Scholar
  15. Rodríguez, A., Canosa, J., & Tojo, J. (2001). Density, refractive index, and speed of sound of binary mixtures (Diethyl Carbonate + alcohols) at several temperatures. Journal of Chemical & Engineering Data, 46, 1506–1515. DOI: 10.1021/je.010148d.CrossRefGoogle Scholar
  16. Rodríguez, A., Canosa, J., & Tojo, J. (2003). Physical properties of the binary mixtures (diethyl carbonate + hexane, heptane, octane and cyclohexane) from T=293.15K to T=313.15K. The Journal of Chemical Thermodynamics, 35, 1321–1333. DOI: 10.1016/S0021-9614(03)00096-X.CrossRefGoogle Scholar
  17. Tasić, A. Ž., Djordjević, B. D., & Grozdanić, D. K. (1992). Use of mixing rules in predicting refractive indices and specific refractivities for some binary liquid mixtures. Journal of Chemical & Engineering Data, 37, 310–313. DOI: 10.1021/je00007a009.CrossRefGoogle Scholar
  18. Touriño, A., Hervallo, M., Moreno, V., Iglesias, M., & Marino, G. (2004). Thermodynamics of binary mixtures of aliphatic linear alkanes (C6-C12) at 298.15 K. Physics & Chemistry of Liquids, 42, 37–51. DOI: 10.1080/0031910021000059054.CrossRefGoogle Scholar

Copyright information

© Versita 2008

Authors and Affiliations

  • Ivona R. Radović
    • 1
  • Mirjana Lj. Kijevčanin
    • 1
    Email author
  • Marijan Z. Gabrijel
    • 1
  • Slobodan P. Šerbanović
    • 1
  • Bojan D. Djordjević
    • 1
  1. 1.Department of Chemical Engineering, Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia

Personalised recommendations