Advertisement

Chemical Papers

, 62:288 | Cite as

Synthesis and antimicrobial activity of quinoline-based 2-pyrazolines

  • Munawar A. MunawarEmail author
  • Muhammad Azad
  • Makshoof Athar
  • Paul W. Groundwater
Original Paper

Abstract

A series of 2-pyrazolines was prepared in a reaction of quinolinylchalcones with phenyl hydrazine under both conventional and microwave-induced heating. Structures of the synthesized compounds were characterized by spectroscopic data and CHN analyses. All prepared compounds were tested for antimicrobial activity against bacterial strains, viz. Staphylococcus aureus, Salmonella typhii, Escherichia coli, and Shigella dysentery. Almost all synthesized compounds have shown antimicrobial activity; however, compounds with a chloro group as a substituent have been found to be more effective.

Keywords

pyrazolines chalcones N-substituted 3-acetyl-4-hydroxyquinolin-2(1H)-one antimicrobial activity 

References

  1. Abid, M., & Azam, A. (2006). Synthesis, characterization and antiamoebic activity of 1-(thiazolo[4,5-b]quinoxaline-2-yl)-3-phenyl-2-pyrazoline derivatives. Bioorganic & Medicinal Chemistry Letters, 16, 2812–2816. DOI: 10.1016/j.bmcl.2006.01.116.CrossRefGoogle Scholar
  2. Ankhiwala, M. D., & Hathi, M. V. (1994). Synthesis and antibacterial activity of some 1-phenyl-3,5-diaryl-1-2-pyrazolines and 3,5-diaryl-1-2-isoxazolines. Journal of the Indian Chemical Society, 71, 587–589.Google Scholar
  3. Azad, M., Munawar, M. A., & Athar, M. (2007). Synthetic and antibacterial studies of quinolinylchalcones. Journal of Applied Sciences, 7, 1620–1625.CrossRefGoogle Scholar
  4. Azarifar, D., & Shaabanzadeh, M. (2002). Synthesis and characterization of new 3,5-dinapthyl substituted 2-pyrazolines and study of their antimicrobial activity. Molecules, 7, 885–895. Retrieved from http://www.mdpi.org/molecules/papers/11050370.pdf.Google Scholar
  5. Bansal, E., Srivastava, V. K., & Kumar, A. (2001). Synthesis and anti-inflammatory activity of 1-acetyl-5-(substituted aryl)-3-(β-napthylamino)-2-pyrazolines and [(substituted β-aminoethyl)amido]napthalenes. European Journal of Medicinal Chemistry, 36, 81–92. DOI: 10.1016/S0223-5234(00)01179-x.CrossRefGoogle Scholar
  6. Borah, R., Kalita, D. J., & Sarma, J. C. (2002). Microwave promoted selective preparation of acetals and esters from aldehydes. Indian Journal of Chemistry, Section B, 41B, 1032–1038.Google Scholar
  7. Das, N. B., & Mittra, A. S. (1978). Synthesis and fungitoxicity of some pyrazolyl Schiff bases. Journal of the Indian Chemical Society, 55, 907–909.Google Scholar
  8. Dobaria, A. V., Patel, J. R., & Parekh, H. H. (2003). Synthesis of pyrazolines and isoxazole derivatives bearing chloroquinoline nucleus as potential antimicrobial agents. Indian Journal of Chemistry, Section B, 42B, 2019–2022.Google Scholar
  9. Elguero, J. (1996). Pyrazoles. In A. R. Katritzky, C. W. Rees, & E. F. V. Scriven (Eds.), Comprehensive Heterocyclic Chemistry II (pp. 1–75), Vol. 3. Oxford: Pergamon Press.Google Scholar
  10. Ibrahim, S. S., Allimony, H. A., & Othman, E. S. (1997). 3-Acryloyl-1,2-dihydro-4-hydroxy-1-methyl-2-oxoquinoline derivatives and their behaviour towards some nucleophiles. Chemical Papers, 51, 33–42.Google Scholar
  11. Kabli, R. A., Khalaf, A. A., Zimaity, M. T., Khalil, A. M., Kaddah, A. M., & Al-Rifaie, H. A. (1986). Synthesis of a new series of furyl and thienyl substituted pyrazolines starting with furyl and thienyl chalcones. Journal of the Indian Chemical Society, 68, 47–51.Google Scholar
  12. Kappe, T., Aigner, R., Hohengassner, P., & Stadlbauer, W. (1994). Syntheses of 3-acyl-4-hydroxy-2(1H)-quinolones. Journal für praktische Chemie, 336, 596–601. DOI: 10.1002/prac.19943360707.CrossRefGoogle Scholar
  13. Kappe, T., Aigner, R., Jöbstl, M., Hohengassner, P., & Stadlbauer, W. (1995). Reactions of 3-acyl-4-hydroxy-2(1H)-quinolones with nitrogen bases. Heterocyclic Communications, 1, 341–352.Google Scholar
  14. Karvembu, R., & Natarajan, K. (2002). Synthesis and spectral studies of binuclear ruthenium(II) carbonyl complexes containing bis(β-diketone) and their applications. Polyhedron, 21, 219–223. DOI: 10.1016/S0277-5387(01)00980-9.CrossRefGoogle Scholar
  15. Kedar, R. M., Vidhale, N. N., & Chincholkar, M. M. (1997). Synthesis of new heterocyclics and their antimicrobial studies. Oriental Journal of Chemistry, 13, 143–148.Google Scholar
  16. Khalil, H. Z., & Yanni, S. A. (1981). Synthesis of new anilidopyrazoline and isoxazoline derivatives. Journal of the Indian Chemical Society, 58, 168–170.Google Scholar
  17. Korgaokar, S. S., Patel, P. H., Shah, M. J., & Parekh, H. H. (1996). Studies on pyrazolines: Preparation and antimicrobial activity of 3-(3′-p-chlorophenylsulphonamidophenyl)-5-aryl-1H/acetyl pyrazolines. Indian Journal of Pharmaceutical Sciences, 58, 222–225.Google Scholar
  18. Lévai, A. (2005). Synthesis of chlorinated 3,5-diaryl-2-pyrazolines by the reaction of chlorochalcones with hydrazines. ARKIVOC, ix, 344–352. Retrieved from http://www.arkatusa.org/?VIEW=MANUSCRIPT&MSID=1365.Google Scholar
  19. Lombardino, J. G., & Otterness, I. G. (1981). Novel immunosuppressive agents. Potent immunological activity of some benzothiopyrano[4,3-c]pyrazol-3-one. Journal of Medicinal Chemistry, 24, 830–834. DOI: 10.1021/jm00139012.CrossRefGoogle Scholar
  20. Nauduri, D., & Reddy, G. B. S. (1998). Antibacterial and antimycotics: Part 1: Synthesis and activity of 2-pyrazoline derivatives. Chemical and Pharmaceutical Bulletin, 46, 1254–1260.Google Scholar
  21. Prasad, Y. R., Rao, A. L., Prasoona, L., Murali, K., & Kumar, P. R. (2005). Synthesis and antidepressant activity of some 1,3,5-triphenyl-2-pyrazolines and 3-(2″-hydroxynaphthalen-1″-yl)-1,5-diphenyl-2-pyrazolines. Bioorganic & Medicinal Chemistry Letters, 15, 5030–5034. DOI: 10.1002/chin.200607129.CrossRefGoogle Scholar
  22. Ramalingam, K., Thyvelikakath, G. X., Berlin, K. D., Chesnut, R. W., Brown, R. A., Durham, N. N., Ealick, S. E., & Van der Helm, D. (1977). Synthesis and biological activity of some derivatives of thiochroman-4-one and tetrahydrothiapyran-4-one. Journal of Medicinal Chemistry, 20, 847–850. DOI: 10.1021/jm00216a024.CrossRefGoogle Scholar
  23. Rathode, S., Singh, A., Berad, B. N., Patil, S. D., & Dosh, A. G. (2000). Synthesis of 3-methyl-4-(substituted benzothiazol-2-yl)carboxamido-5-phenylpyrazolines and their antimicrobial activity. Oriental Journal of Chemistry, 16, 315–318.Google Scholar
  24. Regaila, H. A, El-Bayonk, A. K., & Hammad, M. (1979). Synthesis of some new benzimidazole and N-acetyl pyrazoline derivatives. Egyptian Journal of Chemistry, 20, 157–166.Google Scholar
  25. Sayed, A. A., Sami, S. M., Elfayoumi, A., & Mohamed, E. A. (1976). The behaviour of some 3-substituted 4-hydroxy-1-alkyl (or phenyl) carbostyrils towards amines and hydrazines. Egyptian Journal of Chemistry, 19, 811–826.Google Scholar
  26. Thakare, V. G., & Wadodkar, K. N. (1986). Synthesis of isomeric Δ2-pyrazolines. Indian Journal of Chemistry, Section B, 25B, 610–612.Google Scholar
  27. Varma, S. (1999). Solvent-free organic syntheses using supported reagents and microwave irradiation. Green Chemistry, 1, 43–55. DOI: 10.1039/a808223e.CrossRefGoogle Scholar

Copyright information

© Versita 2008

Authors and Affiliations

  • Munawar A. Munawar
    • 1
    Email author
  • Muhammad Azad
    • 1
  • Makshoof Athar
    • 1
  • Paul W. Groundwater
    • 2
  1. 1.Institute of ChemistryUniversity of the PunjabLahorePakistan
  2. 2.Pharmacy School University of SunderlandSunderlandUK

Personalised recommendations