Advertisement

Chemical Papers

, Volume 62, Issue 3, pp 281–287 | Cite as

Preparation and antiplatelet activity of glycidic acid derivatives

  • Josef JampílekEmail author
  • Eliška Brojerová
  • Martin Doležal
  • Jiří Kuneš
  • Daniel Jun
Original Paper
  • 47 Downloads

Abstract

Arylalkanoic acid derivatives exhibit a variety of biological effects. In the current publication some of new glycidic acid derivatives were prepared via the Darzens condensation. The synthetic approach, analytical and spectroscopic data of all newly synthesized compounds are presented. The prepared compounds were evaluated as potential inhibitors of arachidonic acid-induced platelet aggregation and their activity was compared with that of acetylsalicylic acid as the standard. (±)-Ethyl 3-{4-[(4-methoxyphenyl)sulfanyl]phenyl}-3-methyl-cis-oxirane-2-carboxylate (IC50 = 0.07 mmol L−1) and (±)-3-{4-[(4-methoxyphenyl)sulfanyl]phenyl}-3-methyl-cis-oxirane-2-carboxylic acid (IC50 = 0.06 mmol L−1) showed the highest antiplatelet activity against arachidonic acid-induced platelet aggregation comparable with the standard. Structure-activity relationships between the chemical structure, lipophilicity, and the antiplatelet activity of the evaluated compounds are discussed.

Keywords

glycidic acid derivatives Darzens condensation geometric isomerism in vitro antiplatelet activity lipophilicity structure-activity relationships 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abidi, S. L., & Wolfhagen, J. L. (1979). Proof of configuration of (2s,3R)-(+)-ethyl β-methyl-trans-β-phenylglycidate and of (S)-(−)-2-phenylpropanal. Journal of Organic Chemistry, 44, 433–435. DOI: 10.1021/jo01317a027.CrossRefGoogle Scholar
  2. Aggarwal, V. K., Boccardo, G., Worrall, J. M., Adams, H., & Alexander, R. (1997). 2-Halo-1,3-dithiane-1,3-dioxide: a diastereoselective carbonyl anion equivalent in reactions with aldehydes. Journal of Chemical Society, Perkin Transactions 1, 1997, 11–19. DOI: 10.1039/a603416k.CrossRefGoogle Scholar
  3. Ballester, M. (1955). Mechanisms of the Darzens and related condensations. Chemical Reviews, 55, 283–300. DOI: 10.1021/cr50002a002.CrossRefGoogle Scholar
  4. Born, G. V. R. (1962). Aggregation of blood platelets by adenosinediphosphate and its reversal. Nature, 194, 927–929. DOI:10.1038/194927b0.CrossRefGoogle Scholar
  5. Danda, H., Hansen, M. M., & Heathcock, C. H. (1990). Reversal of stereochemistry in the aldol reactions of a chiral boron enolate. Journal of Organic Chemistry, 55, 173–181. DOI: 10.1021/jo00288a029.CrossRefGoogle Scholar
  6. Doležal, M., Hartl, J., & Glosová, A. (1992). Reversible derivatives of nonsteroidal anti-inflammatory drugs. Československá Farmacie, 41, 30–34.Google Scholar
  7. Field, L., & Carlile, C. G. (1961). Small-ring heterocyclic compounds I. Aldehydes in the Darzens synthesis of glycidic ester. Journal of Organic Chemistry, 26, 3170–3183. DOI:10.1021/jo01067a033.CrossRefGoogle Scholar
  8. Fraga, C. A. M., & Barreiro, E. J. (2006). Medicinal chemistry of N-acylhydrazones: new lead-compounds of analgesic, anti-inflammatory and antithrombotic drugs. Current Medicinal Chemistry, 13, 167–198. DOI: 10.2174/092986706775197881.CrossRefGoogle Scholar
  9. Jampílek, J., Doležal, M., & Dvořák, B. (2002). Bis(4-methoxy-phenyl)disulfide preparation by means of copper catalysts. Chemical Papers, 56, 147–149.Google Scholar
  10. Jampílek, J., Doležal, M., Kuneš, J., Víchová, P., Jun, D., Raich, I., O’Connor, R., & Clynes, M. (2004a). Synthesis of (2E)-2-methyl-3-(4-{[4-(quinolin-2-ylmethoxy)phenyl]sulfanyl}phenyl)prop-2-enoic acid (VUFB 20609) and 2-methyl-3-(4-({[4-(quinolin-2-ylmethoxy)phenyl]sulfanyl}phenyl)propionic acid (VUFB 20584) as potential antileukotrienic agents. Journal of Pharmacy and Pharmacology, 56, 783–794.CrossRefGoogle Scholar
  11. Jampílek, J., Doležal, M., Kuneš, J., Víchová, P., Jun, D., Raich, I., O’Connor, R., & Clynes, M. (2004b). Preparation of 2-(4-{[4-(quinolin-2-ylmethoxy)phenyl]sulfanyl}phenyl) propionic acid (VUFB 20615) and 2-methyl-2-(4-{[4-(quinolin-2-ylmethoxy)phenyl]sulfanyl} phenyl)propionic acid (VUFB 20623) as potential antileukotrienic agents. Current Organic Chemistry, 8, 1235–1243. DOI: 10.2174/1385272043370041.CrossRefGoogle Scholar
  12. Jampílek, J., Doležal, M., Kuneš, J., Raich, I., & Liška, F. (2005). 4-Substituted aryl bromides coupling with 4-methoxybenzene-1-thiol by means of heterogeneous copper catalysts. Chemical Papers, 59, 182–186.Google Scholar
  13. Jampílek, J., Doležal, M., Opletalová, V., & Hartl, J. (2006). 5-Lipoxygenase, leukotrienes biosynthesis and potential antileukotrienic agents. Current Medicinal Chemistry, 13, 117–129. DOI: 10.2174/092986706775197935.CrossRefGoogle Scholar
  14. Jun, D., Kuča, K., Hronek, M., & Opletal, L. (2006). Effect of some acetylcholinesterase reactivators on human platelet aggregation in vitro. Journal of Applied Toxicology 26, 258–261. DOI: 10.1002/jat.1126.CrossRefGoogle Scholar
  15. Katzung, B. G. (1995). Basic & clinical pharmacology (2nd ed.), (pp. 482–496). Prague: H & H Publishing House.Google Scholar
  16. Krysko, A. A., Malovichko, O. L., Andronati, S. A., Kabanova, T. A., Karaseva, T. L., & Petrus A. S. (2006). Novel fibrinogen receptor antagonists — RGDF mimetics, 4-(1,2,3,4-tetrahydro-isoquinoline-7-yl)amino-4-oxo-butyric acid derivatives. Medicinal Chemistry, 2, 295–298. DOI: 10.2174/157340606776930817.CrossRefGoogle Scholar
  17. Li, Y., Paddon-Row, M. N., & Houk, K. N. (1988). Transition structures of aldol reactions. Journal of the American Chemical Society, 110, 3684–3686. DOI: 10.1021/ja00219a067.CrossRefGoogle Scholar
  18. Li, Y., Paddon-Row, M. N., & Houk, K. N. (1990). Transition structures for the aldol reactions of anionic, lithium, and boron enolates. Journal of Organic Chemistry, 55, 481–493. DOI: 10.1021/jo00289a020.CrossRefGoogle Scholar
  19. Maksimenko, A. V., & Tischenko, E. G. (2006). Macromolecular ensembles of internal and external fibrinolysis: the resources for enhancement of thrombolysis efficacy. Current Medicinal Chemistry, 13, 1617–1625. DOI: 10.2174/092986706777441977.CrossRefGoogle Scholar
  20. Murata, S., Suzuki, M., & Noyori, R. (1980). A stereoselective aldol-type condensation of enol silyl ethers and acetals catalyzed by trimethylsilyl trifluoromethanesulfonate. Journal of the American Chemical Society, 102, 3248–3249. DOI: 10.1021/ja00529a062.CrossRefGoogle Scholar
  21. Newman, M. S., & Magerlein, B. J. (1949). The Darzens glycidic ester condensation. Organic Reactions, 5, 413–440.Google Scholar
  22. Pliska, V. (1996). Lipophilicity in drug action and toxicology. Weinheim: Wiley-VCH.Google Scholar
  23. Roth, H. J., & Fenner, H. (2000). Arzneistoffe (3rd ed.), (pp. 497–512). Stuttgart: Deutscher Apotheker Verlag.Google Scholar
  24. Schweinitz, A., Stürzebecher, A., Stürzebecher, U., Schuster, O., Stürzebecher J., & Steinmetzer T. (2006). New substrate analogue inhibitors of factor Xa containing 4-amidinobenzylamide as P1 residue: Part 1. Medicinal Chemistry, 2, 349–361. DOI: 10.2174/157340606777724040.CrossRefGoogle Scholar
  25. Takagi, R., Kimura, J., Shinohara, Y., Ohba, Y., Takezono, K., Hiraga, Y., Kojima, S., & Ohkata, K. (1998). Asymmetric induction in Darzens condensation by means of (−)-8-phenylmenthyl and (−)-methyl auxiliaries. Journal of Chemical Society, Perkin Transactions 1, 1998, 689–698. DOI: 10.1039/a706911a.Google Scholar
  26. Valente, V. R., & Wolfhagen, J. L. (1966). The stereospecific synthesis of cis and trans isomers of glycidic esters and products of the Darzens synthesis. Journal of Organic Chemistry, 31, 2509–2512. DOI: 10.1021/jo01346a019.CrossRefGoogle Scholar
  27. Walker, M. A., & Heathcock, C. H. (1991). Extending the scope of the Evans asymmetric aldol reaction: Preparation of anti and “Non-Evans” syn aldols. Journal of Organic Chemistry, 56, 5747–5750. DOI: 10.1021/jo00020a006.CrossRefGoogle Scholar
  28. Wang, Z. T., Xu, L. W., Xia, C. G., & Wang, H. Q. (2004). Efficient synthesis of α,β-epoxy carbonyl compounds in acetonitrile: Darzens condensation of aromatic aldehydes with ethyl chloroacetate. Helvetica Chimica Acta, 87, 1958–1962. DOI: 10.1002/hlca.200490177.CrossRefGoogle Scholar
  29. Yamamoto, Y., & Maruyama, K. (1980). Zirconium enolate as a new erythro-selective aldol condensation reagent. Tetrahedron Letters, 21, 4607–4610. DOI: 0.1016/0040-4039(80)80086-4.CrossRefGoogle Scholar
  30. Yamamoto, Y., Yatagi, H., Naruta, Y., & Maruyama, K. (1980). Erythro-selective addition of crotyltrialkyltins to aldehydes regardless of the geometry of the crotyl unit. Stereoselection independent of the stereochemistry of precursors. Journal of the American Chemical Society, 102, 7107–7109. DOI: 10.1021/ja00543a040.CrossRefGoogle Scholar

Copyright information

© Versita 2008

Authors and Affiliations

  • Josef Jampílek
    • 1
    Email author
  • Eliška Brojerová
    • 2
  • Martin Doležal
    • 2
  • Jiří Kuneš
    • 2
  • Daniel Jun
    • 3
  1. 1.Zentiva, a.s.PragueCzech Republic
  2. 2.Faculty of Pharmacy in Hradec KrálovéCharles University in PragueHradec KrálovéCzech Republic
  3. 3.Department of Toxicology, Faculty of Military MedicineUniversity of DefenceHradec KrálovéCzech Republic

Personalised recommendations