Advertisement

Chemical Papers

, Volume 62, Issue 3, pp 268–274 | Cite as

Complexes of transition metals bonded to silica via β-diketonate groups — synthesis, structure, and catalytic activity

  • Iwona RykowskaEmail author
  • Włodzimierz Urbaniak
Original Paper

Abstract

Transition metal complexes bonded to silica via silanes with β-diketonate groups can be used as packings for complexation gas chromatography or as immobilized homogenous metal complex catalysts. On basis of elemental analysis and the determination of surface area, possible structures of the complexes formed on the silica surface have been proposed. The possibility of using the immobilized complexes as catalysts has been indicated. Especially nickel complexes were taken into consideration. These immobilized complexes were used previously as packings for complexation gas chromatography.

Keywords

supported metal complexes β-diketonate complexes hydrosilylation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allum, K. G., Hancock, R. D., Howell, I. V., Lester, T. E., McKenzie, S., Pitkethly, R. C., & Robinson, P. J. (1976). Supported transition metal complexes V.: Liquid phase catalytic hydrogenation of hexene-1, cyclohexane and isoprene under continuous flow conditions. Journal of Catalysis, 43, 331–338. DOI: 10.1016/0021-9517(76)90318-3.CrossRefGoogle Scholar
  2. Berendsen, G. E., Pikaart, K. A., & de Galon, L. (1980). Preparation of various bonded phases for HPLC using monochlorosilanes. Journal of Liquid Chromatography, 3, 1437–1464.CrossRefGoogle Scholar
  3. Buszewski, B., Jezierska, M., Welniak, M., & Berek, D. (1998). Survey and tretrends in the preparation of chemically bonded silica phases for liquid chromatographic analysis. Journal of High Resolution Chromatography, 21, 267–281. DOI: 10.1002/(SICI)1521-4168(19980501)21:5〈267::AID-JHRC267〉3.0.CO;2-7.CrossRefGoogle Scholar
  4. Cagniant, D. (1992). Complexation chromatography. New York: Marcel Dekker.Google Scholar
  5. Čapka, M., Czakoová, M., Urbaniak, W., & Schubert, U. (1992). Hydrogenation and hydrosilylation activity of homogeneous and immoblilized dicarbonyl(2,4-pentanedionato)rhodium complexes. Journal of Molecular Catalysis, 74, 335–344. DOI: 10.1016/0304-5102(92)80251-B.CrossRefGoogle Scholar
  6. Charles, G., & Pawlikowski, N. A. (1958). Comparative heat stabilities of some metal acetylacetonate chelates. Journal of Physical Chemistry, 62, 440–444. DOI: 10.1021/j150562a017.CrossRefGoogle Scholar
  7. Gao, H., & Angelici, R. J. (1999). Rhodium-phosphine complex catalysts tethered on silica-supported heterogeneous metal catalysts: arene hydrogenation under atmospheric pressure. Journal of Molecular Catalysis A, 149, 63–74. DOI: 10.1016/S1381-1169(99)00182-X.CrossRefGoogle Scholar
  8. Hartley, F. T. (1985). Supported metal complexes. Dordrecht: Reidel.Google Scholar
  9. Lindener, E., Auer, F., Baumann, A., Wegner, P., Mayer, H. A., Bertagnalli, H., Reinöhl, U., Ertel, T. S., & Weber, A. (2000). Supported organometallic complexes (part XX.): Hydroformylation of olefins with rhodium(I) hybrid catalysts. Journal of Molecular Catalysis A, 157, 97–109. DOI: 10.1016/S1381-1169(00)00038-8.CrossRefGoogle Scholar
  10. Maciejewski, H., Marciniec, B., & Kownacki, I. (2000). Catalysis of hydrosilylation (part XXXIV.): High catalytic efficiency of the nickel equivalent of Karstedt catalyst. Journal of Organometalic Chemistry, 597, 175–181. DOI: 10.1016/S0022-328X(99)00685-3.CrossRefGoogle Scholar
  11. Marciniec, B., & Maciejewski, H. (1993). Catalysis of hydrosilylation (part XXIII.): Effect of substituents at silicon on unusual hydrosilylation of vinylsilanes catalysed by nickel acetylacetonate. Journal of Organometalic Chemistry, 454, 45–50. DOI: 10.1016/0022-328X(93)83221-G.CrossRefGoogle Scholar
  12. Marciniec, B., Maciejewski, H., & Rosenthal, U. (1994). Catalysis of hydrosilylation (part XXV.): Effect of nickel(0) and nickel(II) complex catalysts on dehydrogenative silylation, hydrosilylation and dimerization of vinyltriethoxysilane. Journal of Organometalic Chemistry, 484, 147–151. DOI: 10.1016/0022-328X(94)87198-1.CrossRefGoogle Scholar
  13. Marciniec, B., Maciejewski, H., Guliński, J., Maciejewska, B., & Duczmal, W. (1996). Competitive dehydrogenative silylation and hydrogenative dimerization of vinyltriethoxysilane catalysed by the (Ni(acac)2+PPh3) system, intermediate and mechanistic implications. Journal of Organometalic Chemistry, 521, 245–251. DOI: 10.1016/0022-328X(96)06355-3.CrossRefGoogle Scholar
  14. Marciniec, B. (2005). Catalysis bytransition metal complexes of alkene silylation-recent progress and mechanistic implications. Coordination Chemistry Reviews, 249, 2374–2390. DOI: 10.1016/j.ccr.2005.02.025.CrossRefGoogle Scholar
  15. Mehrotra, R. C., Bohra, R., & Gaur, D. P. (1978). Metal β-diketonates and allied derivatives. London: Academic Press.Google Scholar
  16. Michalska, Z. M., Ostaszewski, B., Strzelec, K., Kwiatkowski, R., & Włochowicz, A. (1994). Selectivity of polyamide-supported rhodium catalysts in the addition of hydrosilanes to vinyl compounds. Reactive Polymers, 23, 85–93. DOI: 10.1016/0923-1137(94)90005-1.CrossRefGoogle Scholar
  17. Novak, J., Buszewski, B., & Berek, D. (1990). Influence of pore structure of silica packing on HPLC column characteristics. Chemical Papers, 44, 31–43.Google Scholar
  18. Panster, P., & Wieland, S. (1996). Immobilization. In B. Cornils, & W. A. Herrmann (Eds.), Applied homogenous catalysis with organometallic compounds (pp. 646–663). Weinheim: VCH.Google Scholar
  19. Picker, J. E., & Stevens, R. E. (1981). Lanthanide metal chelates as selective complexing sorbents for gas chromatography. Journal of Chromatography, 203, 29–40. DOI 10.1016/S0021-9673(00)80279-4.CrossRefGoogle Scholar
  20. Pool, C. F., & Pool, S. K. (1992). Chromatography today. Amsterdam: Elsevier.Google Scholar
  21. Rykowska, I., & Wasiak, W. (2003). The synthesis and characterisation of chemically bonded stationary phases for gas chromatography. Properties of silica modified with Cu(II) and Cr(III) complexes. Chemia Analityczna, 48, 495–507.Google Scholar
  22. Siedle, A. R. (1987). Diketones and related ligands. In G. Wilkinson, R. D. Gillard, & J. A. McClaverty (Eds.), Comprehensive Coordination Chemistry (Vol. 2, Chapter 15.4). Oxford: Pergamon Press.Google Scholar
  23. Urbaniak, W., & Schubert, U. (1991). An efficient synthesis of R3Si(CH2)n-substituted acetylacetone derivatives. Liebigs Annalen der Chemie, 11, 1221–1223. DOI: 10.1002/jlac.1991199101209.CrossRefGoogle Scholar
  24. Vansant, E. F., Van Der Voort, P., & Vrancken, K. L. (1995). Characterization and chemical modification of the surface. Amsterdam: Elsevier.CrossRefGoogle Scholar
  25. Wasiak, W., Urbaniak, W., Obst, I., & Wawrzyniak, R. (1992). Synthesis of silane with beta-diketonate group and their application in modification of silica gel for complexation gas chromatography. Acta Chromatographica, 1, 56–68.Google Scholar
  26. Wasiak, W., & Rykowska, I. (1996). Chemically bonded chelates as selective complexing sorbents for gas chromatography. Silica surface modified with Co(II) and Ni(II) complexes. Journal of Chromatography, 723, 313–324. DOI 0021-9673(95)00872-1.CrossRefGoogle Scholar
  27. Wasiak, W., & Rykowska, I. (1998). Charge-transfer interaction between nucleofilic compounds and chromatographic packing containing chemically bonded Cu(II) complexes. Chromatographia, 48, 284–292. DOI: 10.1007/BF02467684.CrossRefGoogle Scholar
  28. Wasiak, W., & Rykowska, I. (1999). Iminoketonate complexes of Cu(II) chemically bonded to silica in gas chromatography. Analytica Chimica Acta, 378, 101–109. DOI: 10.1016/S0003-2670(98)00567-4.CrossRefGoogle Scholar
  29. Wasiak, W., & Wawrzyniak, R. (2005). Ketoimine modified silica as an adsosbent for gas chromatographic analysis of olefins. Journal of Separation Science, 28, 2454–2462. DOI 10.1002/jssc.200400035.CrossRefGoogle Scholar
  30. Wenzel, T. H., Bonasia, P. J., & Brewitt, T. (1989). Application of metal β-diketonate polymers as selective sorbents in complex mixtures. Journal of Chromatography, 463, 171–176. DOI: 10.1016/S0021-9673(01)84466-6.CrossRefGoogle Scholar
  31. Werner, H., & Möhring, U. (1994). Supported rhodiumcatalysts: new aspects in the formulation of trisubstituted olefins from simple alkenes and diazoalkanes. Journal of Organometallic Chemistry, 475, 277–282. DOI: 10.1016/0022-328X(94)84032-6.CrossRefGoogle Scholar

Copyright information

© Versita 2008

Authors and Affiliations

  1. 1.Faculty of ChemistryAdam Mickiewicz UniversityPoznańPoland
  2. 2.Faculty of Technology and EngineeringUniversity of Technology and Life SciencesBydgoszczPoland

Personalised recommendations