Skip to main content
Log in

Complexes of transition metals bonded to silica via β-diketonate groups — synthesis, structure, and catalytic activity

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Transition metal complexes bonded to silica via silanes with β-diketonate groups can be used as packings for complexation gas chromatography or as immobilized homogenous metal complex catalysts. On basis of elemental analysis and the determination of surface area, possible structures of the complexes formed on the silica surface have been proposed. The possibility of using the immobilized complexes as catalysts has been indicated. Especially nickel complexes were taken into consideration. These immobilized complexes were used previously as packings for complexation gas chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allum, K. G., Hancock, R. D., Howell, I. V., Lester, T. E., McKenzie, S., Pitkethly, R. C., & Robinson, P. J. (1976). Supported transition metal complexes V.: Liquid phase catalytic hydrogenation of hexene-1, cyclohexane and isoprene under continuous flow conditions. Journal of Catalysis, 43, 331–338. DOI: 10.1016/0021-9517(76)90318-3.

    Article  CAS  Google Scholar 

  • Berendsen, G. E., Pikaart, K. A., & de Galon, L. (1980). Preparation of various bonded phases for HPLC using monochlorosilanes. Journal of Liquid Chromatography, 3, 1437–1464.

    Article  CAS  Google Scholar 

  • Buszewski, B., Jezierska, M., Welniak, M., & Berek, D. (1998). Survey and tretrends in the preparation of chemically bonded silica phases for liquid chromatographic analysis. Journal of High Resolution Chromatography, 21, 267–281. DOI: 10.1002/(SICI)1521-4168(19980501)21:5〈267::AID-JHRC267〉3.0.CO;2-7.

    Article  CAS  Google Scholar 

  • Cagniant, D. (1992). Complexation chromatography. New York: Marcel Dekker.

    Google Scholar 

  • Čapka, M., Czakoová, M., Urbaniak, W., & Schubert, U. (1992). Hydrogenation and hydrosilylation activity of homogeneous and immoblilized dicarbonyl(2,4-pentanedionato)rhodium complexes. Journal of Molecular Catalysis, 74, 335–344. DOI: 10.1016/0304-5102(92)80251-B.

    Article  Google Scholar 

  • Charles, G., & Pawlikowski, N. A. (1958). Comparative heat stabilities of some metal acetylacetonate chelates. Journal of Physical Chemistry, 62, 440–444. DOI: 10.1021/j150562a017.

    Article  CAS  Google Scholar 

  • Gao, H., & Angelici, R. J. (1999). Rhodium-phosphine complex catalysts tethered on silica-supported heterogeneous metal catalysts: arene hydrogenation under atmospheric pressure. Journal of Molecular Catalysis A, 149, 63–74. DOI: 10.1016/S1381-1169(99)00182-X.

    Article  CAS  Google Scholar 

  • Hartley, F. T. (1985). Supported metal complexes. Dordrecht: Reidel.

    Google Scholar 

  • Lindener, E., Auer, F., Baumann, A., Wegner, P., Mayer, H. A., Bertagnalli, H., Reinöhl, U., Ertel, T. S., & Weber, A. (2000). Supported organometallic complexes (part XX.): Hydroformylation of olefins with rhodium(I) hybrid catalysts. Journal of Molecular Catalysis A, 157, 97–109. DOI: 10.1016/S1381-1169(00)00038-8.

    Article  Google Scholar 

  • Maciejewski, H., Marciniec, B., & Kownacki, I. (2000). Catalysis of hydrosilylation (part XXXIV.): High catalytic efficiency of the nickel equivalent of Karstedt catalyst. Journal of Organometalic Chemistry, 597, 175–181. DOI: 10.1016/S0022-328X(99)00685-3.

    Article  CAS  Google Scholar 

  • Marciniec, B., & Maciejewski, H. (1993). Catalysis of hydrosilylation (part XXIII.): Effect of substituents at silicon on unusual hydrosilylation of vinylsilanes catalysed by nickel acetylacetonate. Journal of Organometalic Chemistry, 454, 45–50. DOI: 10.1016/0022-328X(93)83221-G.

    Article  CAS  Google Scholar 

  • Marciniec, B., Maciejewski, H., & Rosenthal, U. (1994). Catalysis of hydrosilylation (part XXV.): Effect of nickel(0) and nickel(II) complex catalysts on dehydrogenative silylation, hydrosilylation and dimerization of vinyltriethoxysilane. Journal of Organometalic Chemistry, 484, 147–151. DOI: 10.1016/0022-328X(94)87198-1.

    Article  CAS  Google Scholar 

  • Marciniec, B., Maciejewski, H., Guliński, J., Maciejewska, B., & Duczmal, W. (1996). Competitive dehydrogenative silylation and hydrogenative dimerization of vinyltriethoxysilane catalysed by the (Ni(acac)2+PPh3) system, intermediate and mechanistic implications. Journal of Organometalic Chemistry, 521, 245–251. DOI: 10.1016/0022-328X(96)06355-3.

    Article  CAS  Google Scholar 

  • Marciniec, B. (2005). Catalysis bytransition metal complexes of alkene silylation-recent progress and mechanistic implications. Coordination Chemistry Reviews, 249, 2374–2390. DOI: 10.1016/j.ccr.2005.02.025.

    Article  CAS  Google Scholar 

  • Mehrotra, R. C., Bohra, R., & Gaur, D. P. (1978). Metal β-diketonates and allied derivatives. London: Academic Press.

    Google Scholar 

  • Michalska, Z. M., Ostaszewski, B., Strzelec, K., Kwiatkowski, R., & Włochowicz, A. (1994). Selectivity of polyamide-supported rhodium catalysts in the addition of hydrosilanes to vinyl compounds. Reactive Polymers, 23, 85–93. DOI: 10.1016/0923-1137(94)90005-1.

    Article  CAS  Google Scholar 

  • Novak, J., Buszewski, B., & Berek, D. (1990). Influence of pore structure of silica packing on HPLC column characteristics. Chemical Papers, 44, 31–43.

    CAS  Google Scholar 

  • Panster, P., & Wieland, S. (1996). Immobilization. In B. Cornils, & W. A. Herrmann (Eds.), Applied homogenous catalysis with organometallic compounds (pp. 646–663). Weinheim: VCH.

    Google Scholar 

  • Picker, J. E., & Stevens, R. E. (1981). Lanthanide metal chelates as selective complexing sorbents for gas chromatography. Journal of Chromatography, 203, 29–40. DOI 10.1016/S0021-9673(00)80279-4.

    Article  CAS  Google Scholar 

  • Pool, C. F., & Pool, S. K. (1992). Chromatography today. Amsterdam: Elsevier.

    Google Scholar 

  • Rykowska, I., & Wasiak, W. (2003). The synthesis and characterisation of chemically bonded stationary phases for gas chromatography. Properties of silica modified with Cu(II) and Cr(III) complexes. Chemia Analityczna, 48, 495–507.

    CAS  Google Scholar 

  • Siedle, A. R. (1987). Diketones and related ligands. In G. Wilkinson, R. D. Gillard, & J. A. McClaverty (Eds.), Comprehensive Coordination Chemistry (Vol. 2, Chapter 15.4). Oxford: Pergamon Press.

    Google Scholar 

  • Urbaniak, W., & Schubert, U. (1991). An efficient synthesis of R3Si(CH2)n-substituted acetylacetone derivatives. Liebigs Annalen der Chemie, 11, 1221–1223. DOI: 10.1002/jlac.1991199101209.

    Article  Google Scholar 

  • Vansant, E. F., Van Der Voort, P., & Vrancken, K. L. (1995). Characterization and chemical modification of the surface. Amsterdam: Elsevier.

    Book  Google Scholar 

  • Wasiak, W., Urbaniak, W., Obst, I., & Wawrzyniak, R. (1992). Synthesis of silane with beta-diketonate group and their application in modification of silica gel for complexation gas chromatography. Acta Chromatographica, 1, 56–68.

    CAS  Google Scholar 

  • Wasiak, W., & Rykowska, I. (1996). Chemically bonded chelates as selective complexing sorbents for gas chromatography. Silica surface modified with Co(II) and Ni(II) complexes. Journal of Chromatography, 723, 313–324. DOI 0021-9673(95)00872-1.

    Article  CAS  Google Scholar 

  • Wasiak, W., & Rykowska, I. (1998). Charge-transfer interaction between nucleofilic compounds and chromatographic packing containing chemically bonded Cu(II) complexes. Chromatographia, 48, 284–292. DOI: 10.1007/BF02467684.

    Article  CAS  Google Scholar 

  • Wasiak, W., & Rykowska, I. (1999). Iminoketonate complexes of Cu(II) chemically bonded to silica in gas chromatography. Analytica Chimica Acta, 378, 101–109. DOI: 10.1016/S0003-2670(98)00567-4.

    Article  CAS  Google Scholar 

  • Wasiak, W., & Wawrzyniak, R. (2005). Ketoimine modified silica as an adsosbent for gas chromatographic analysis of olefins. Journal of Separation Science, 28, 2454–2462. DOI 10.1002/jssc.200400035.

    Article  Google Scholar 

  • Wenzel, T. H., Bonasia, P. J., & Brewitt, T. (1989). Application of metal β-diketonate polymers as selective sorbents in complex mixtures. Journal of Chromatography, 463, 171–176. DOI: 10.1016/S0021-9673(01)84466-6.

    Article  CAS  Google Scholar 

  • Werner, H., & Möhring, U. (1994). Supported rhodiumcatalysts: new aspects in the formulation of trisubstituted olefins from simple alkenes and diazoalkanes. Journal of Organometallic Chemistry, 475, 277–282. DOI: 10.1016/0022-328X(94)84032-6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwona Rykowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rykowska, I., Urbaniak, W. Complexes of transition metals bonded to silica via β-diketonate groups — synthesis, structure, and catalytic activity. Chem. Pap. 62, 268–274 (2008). https://doi.org/10.2478/s11696-008-0022-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-008-0022-2

Keywords

Navigation