Chemical Papers

, Volume 62, Issue 3, pp 260–267 | Cite as

Synthesis and electrical properties of CuBr2 complexes with 1,10-phenanthroline monohydrate

  • Sülin TaşcıoǧluEmail author
  • Esra Kakı
  • Mehmet Arı
Original Paper


Using 1,10-phenanthroline monohydrate and CuBr2 in molar ratios of 1:1 and 2:1, in CH3OH/H2O (ϕr = 1:1), the complexes [(phen)CuBr2]2, (I), and {[(phen)2CuBr]Br·H2O}, (II), have been prepared. The hydrogen bondings and aqua bridges between coordinated and noncoordinated bromides of II have been observed by XRD. Complex II has a triclinic crystal structure with distorted trigonal bipyramidal coordination geometry. Possibilities of ligand exchange with hydroxide or ammonia have been examined in both complexes. While the mononuclear complex II is stable in a refluxed ammonia solution and the complex {[phen)2CuBr]Br·3H2O}, (IV), trihydrate of II, is obtained; the binuclear complex I reacts with the ammonia solution to replace one of its bromides in the subunits with hydroxide to give {[(phen)2Cu2Br2(OH)2]·4H2O}, (III). Structural and electrical properties of the complexes have been investigated by elemental analysis, vibrational and electronic spectroscopy, mass spectrometry, TGA, XRD and the four-point probe method. The temperature coefficients of resistivity and the activation energies of the complexes have also been obtained. All complexes behave as intrinsic semiconductor in the temperature range of 310–440 K.


1,10-phenanthroline copper(II) bromide electrical conductivity semiconductor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Rahman, L. H., Battaglia, L. P., & Mahmoud, M. R. (1996). Synthesis, characterization and stability constant determination of L-phenylalanine ternary complexes of cobalt(II), nickel(II), copper(II) with N-heterocyclic aromatic bases and X-ray crystal structure of aqua-1,10-phenanthroline-L-phenylalaninatocopper(II) perchlorate complex. Polyhedron, 15, 327–334. DOI: 10.1016/0277-5387(95)00157-N.CrossRefGoogle Scholar
  2. Burnett, M. N., & Johnson, C. K. (1996). ORTEP-III: Oak Ridge Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, Oak Ridge National Laboratory Report ORNL-6895. Oak Ridge, Tennessee, USA.Google Scholar
  3. Clarke, R., Latham, K., Rix, C., Hobday, M., & White, J. (2005). Novel copper materials based on the self-assembly of organophosphonic acids and bidentate amines. CrystEng-Comm, 7, 28–36. DOI: 10.1039/b416208k.Google Scholar
  4. Connors, K. A. (1990). Chemical kinetics: The study of reaction rates in solution. Cambridge: VCH Publishers.Google Scholar
  5. Erkkila, K. E., Odom, D. T., & Barton, J. K. (1999). Recognition and reaction of metallointercalators with DNA. Chemical Reviews, 99, 2777–2796. DOI: 10.1021/cr9804341.CrossRefGoogle Scholar
  6. Farrugia, L. J. (1997). ORTEP-3 for Windows — a version of ORTEP-III with a graphical user interface (GUI). Journal of Applied Crystallography, 30, 565. DOI: 10.1107/S0021889897003117.CrossRefGoogle Scholar
  7. Farrugia, L. J. (1999). WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837–838. DOI: 10.1107/S0021889899006020.CrossRefGoogle Scholar
  8. Garland, M. T., Grandjean, D., Spodine, E., Atria, A. M., & Manzur, J. (1988). Structure of dibromo(1,10-phenanthroline)copper(II). Acta Crystallographica, Section C, C44, 1547–1549. DOI: 10.1107/S0108270188003427.Google Scholar
  9. Laidler, K. J. (1997). Chemical kinetics (3rd ed.). New York: Harper Collins Publishers.Google Scholar
  10. Lu, L., Qin, S., Yang, P., & Zhu, M. (2004). Chlorobis(1,10-phenanthroline)copper(II) chloride methanol solvate 4.5-hydrate. Acta Crystallographica, Section E, E60, m574–m576. DOI: 10.1107/S1600536804008323.CrossRefGoogle Scholar
  11. Mahadevan, S., & Palaniandavar, M. (1998). Spectral and electrochemical behavior of copper(II)-phenanthrolines bound to calf thymus DNA. [(5,6-dimethyl-OP)2Cu]2+ (5,6-dimethyl-OP = 5,6-dimethyl-1,10-phenanthroline) induces a conformational transition from B to Z DNA. Inorganic Chemistry, 37, 3927–3934. DOI: 10.1021/ic9711067.CrossRefGoogle Scholar
  12. Murphy, G., Nagle, P., Murphy, B., & Hathaway, B. (1997). Crystal structures, electronic properties and structural pathways of four [Cu(phen)2Cl][Y] complexes (phen = 1,10-phenanthroline; Y: BF4.0.5H2O, PF6, CF3SO3.H2O or BPh4). Journal of Chemical Society, Dalton Transactions, 1997, 2645–2652. DOI: 10.1039/a702291c.Google Scholar
  13. Murphy, G., O’sullivan, C., Murphy, B., & Hathaway, B. (1998). Comparative crystallography. 5. Crystal structures, electronic properties, and structural pathways of five [Cu(phen)2Br][Y] complexes, Y = [Br]·H2O, [ClO4], [NO3] cd H2O, [PF6] and [BPh4]. Inorganic Chemistry, 37, 240–248. DOI:10.1021/ic970458a.CrossRefGoogle Scholar
  14. Nakai, H., & Deguchi, Y. (1975). The crystal structure of monoaquobis(1,10-phenanthroline)copper(II) nitrate, [Cu(H20)(phen)2](NO3)2. Bulletin of the Chemical Society of Japan, 48, 2557–2560. DOI: 10.1246/bcsj.48.2557.CrossRefGoogle Scholar
  15. Parker, O. J., Greiner, G. T., Breneman, G. L., & Willett, R. D. (1994). Crystal and molecular structure and spectral properties of bromobis(1,10-phenanthroline)copper(II) perchlorate. Polyhedron, 13, 267–271. DOI: 10.1016/S0277-5387(00)86602-4.CrossRefGoogle Scholar
  16. Ray, N., Tyagi, S., & Hathaway, B. (1982). The preparation and properties of [Cu(chelate)X2] complexes. Crystal structure and electronic properties of [bis(2-pyridyl)amine]dibromocopper(II). Journal of Chemical Society, Dalton Transactions, 1982, 143–146. DOI: 10.1039/DT9820000143.Google Scholar
  17. Saha, D. K., Sandbhor, U., Shirisha, K., Padhye, S., Deobagkar, D., Anson, C. E., & Powell, A. K. (2004). A novel mixed-ligand antimycobacterial dimeric copper complex of ciprofloxacin and phenanthroline. Bioorganic & Medicinal Chemistry Letters, 14, 3027–3032. DOI: 10.1016/j.bmcl.2004.04.043.CrossRefGoogle Scholar
  18. Schaeffer, F., Rimsky, S., & Spassky, A. (1996). DNA-stacking interactions determine the sequence specificity of the deoxyribonuclease activity of 1,10-phenanthroline-copper ion. Journal of Molecular Biology, 260, 523–539. DOI: 10.1006/jmbi.1996.0419.CrossRefGoogle Scholar
  19. Sheldrick, G. M. (1997). SHELXS-97 and SHELXL-97 (Program for crystal structure resolution and analysis). Göttingen: University of Göttingen.Google Scholar
  20. Sigman, D. S., Mazumder, A., & Perrin, D. M. (1993). Chemical nucleases. Chemical Reviews, 93, 2295–2316. DOI: 10.1021/cr00022a011.CrossRefGoogle Scholar
  21. Smits, F. M. (1958). Measurement of sheet resistivities with the 4-point probe. The Bell System Technical Journal, 37, 711–718.Google Scholar
  22. Stoe & Cie GmbH (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Darmstadt: Stoe & Cie GmbH.Google Scholar
  23. Valle, G., Gorzalez, A. S., & Ettorre, R. (1993). Structure of dibromobis(2-chloroimidazole)copper(II). Acta Crystallographica, Section C, C49, 1298–1300. DOI: 10.1107/S0108270193001209.Google Scholar
  24. Vijayalakshmi, R. R., & Shridbar, M. H. (2002). Optical and electrical properties of poly(4-vinylpyridine)/NiPc composite doped with iodine. Materials Chemistry and Physics, 76, 171–180. DOI: 10.1016/S0254-0584(01)00523-5.CrossRefGoogle Scholar
  25. Wilde, R. E., Srinivasan, T. K. K., & Ghosh, S. N. (1973). Mono complexes of 2,2′-bipyridine and 1,10-phenanthroline with transition metals. Journal of Inorganic and Nuclear Chemistry, 35, 1017–1021. DOI: 10.1016/0022-1902(73)80474-9.CrossRefGoogle Scholar
  26. Zhang, Q.-Q., Zhang, F., Wang, W.-G., & Wang X.-L. (2006). Synthesis, crystal structure and DNA binding studies of a binuclear copper(II) complex with phenanthroline. Journal of Inorganic Biochemistry, 100, 1344–1352. DOI: 10.1016/j.jinorgbio.2006.03.010.CrossRefGoogle Scholar

Copyright information

© Versita 2008

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Science and LettersMarmara UniversityIstanbulTurkey
  2. 2.Department of Physics, Faculty of Science and LettersErciyes UniversityKayseriTurkey

Personalised recommendations